Tandem Structure of Porous Silicon Film on Single-Walled Carbon Nanotube Macrofilms for Lithium-Ion Battery Applications

被引:72
作者
Rong, Jiepeng [1 ]
Masarapu, Charan [1 ]
Ni, Jie [2 ]
Zhang, Zhengjun [2 ]
Wei, Bingqing [1 ]
机构
[1] Univ Delaware, Dept Mech Engn, Newark, DE 19716 USA
[2] Tsinghua Univ, Dept Mat Sci & Engn, Beijing 100084, Peoples R China
基金
美国国家科学基金会;
关键词
porous silicon; single-walled carbon nanotubes; tandem structure lithium-ion battery; anode materials; electron beam evaporation; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; NANOSTRUCTURED SILICON; RECHARGEABLE BATTERIES; ANODES; ELECTRODES; NANOWIRES; STORAGE; DEPOSITION; INSERTION;
D O I
10.1021/nn101196j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Development of materials and structures leading to high energy and power density lithium-ion batteries is a major challenge to the power needs of the electronic and automobile industries. Silicon is an attractive anode material being closely scrutinized for use in lithium-ion batteries but suffers from a poor cyclability and early capacity fading. In this work, we present a tandem structure of porous silicon film on single-walled carbon nanotube (SWNT) film to significantly improve the cycling stability of silicon as lithium-ion battery anode material. With this new structure configuration of the silicon films, a reversible specific capacity of 2221 mAh/g was retained after 40 charge-discharge cycles at 0.1 C rate, which is 3.6 times that of silicon film on a regular copper substrate and more than 11 times that of the SWNT film. The facile method is efficient and effective in improving specific capacity and stability of silicon anode lithium-ion batteries and will provide a powerful means for the development of lithium-ion batteries.
引用
收藏
页码:4683 / 4690
页数:8
相关论文
共 27 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Colossal reversible volume changes in lithium alloys [J].
Beaulieu, LY ;
Eberman, KW ;
Turner, RL ;
Krause, LJ ;
Dahn, JR .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (09) :A137-A140
[3]   ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX [J].
BOUKAMP, BA ;
LESH, GC ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) :725-729
[4]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[5]   Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries [J].
Cui, Li-Feng ;
Yang, Yuan ;
Hsu, Ching-Mei ;
Cui, Yi .
NANO LETTERS, 2009, 9 (09) :3370-3374
[6]   Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities [J].
Graetz, J ;
Ahn, CC ;
Yazami, R ;
Fultz, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (05) :A698-A702
[7]   Highly reversible lithium storage in nanostructured silicon [J].
Graetz, J ;
Ahn, CC ;
Yazami, R ;
Fultz, B .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (09) :A194-A197
[8]   A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion [J].
Holzapfel, M ;
Buqa, H ;
Scheifele, W ;
Novák, P ;
Petrat, FM .
CHEMICAL COMMUNICATIONS, 2005, (12) :1566-1568
[9]   Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries [J].
Kim, Hyunjung ;
Han, Byunghee ;
Choo, Jaebum ;
Cho, Jaephil .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (52) :10151-10154
[10]   Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology [J].
Kim, Young-Lae ;
Sun, Yang-Kook ;
Lee, Sung-Man .
ELECTROCHIMICA ACTA, 2008, 53 (13) :4500-4504