mef2c is activated directly by myogenic basic helix-loop-helix proteins during skeletal muscle development in vivo

被引:120
作者
Dodou, E [1 ]
Xu, SM [1 ]
Black, BL [1 ]
机构
[1] Univ Calif San Francisco, Inst Cardiovasc Res, San Francisco, CA 94143 USA
关键词
MEF2C; MyoD; myogenic bHLH; transgenic; mouse; development; transcription; enhancer; muscle; E box;
D O I
10.1016/S0925-4773(03)00178-3
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Skeletal muscle development requires the coordinated expression of numerous transcription factors to control the specification of mesodermal progenitor cells to a muscle fate and the differentiation of those committed myoblasts into functional, contractile muscle. Two families of transcription factors play key roles in these processes. The myogenic basic helix-loop-helix (bHLH) proteins, MyoD and Myf5, are required for myoblast specification, while two members of the same family, myogenin and MRF4, play key roles in myoblast differentiation in vivo. All four members of the myogenic bHLH family are sufficient to dominantly induce myogenesis when introduced into a variety of non-muscle cells in culture, however this function requires the activity of a second fan-lily of transcriptional regulators, the myocyte enhancer factor 2 (MEF-2) family. MEF2 factors are essential for muscle differentiation, and previous studies have shown that MyoD and MEF2 family members function combinatorially to activate transcription and myogenesis. Consistent with these observations, the majority of skeletal muscle genes require both MyoD and MEF2 family members to activate their transcription. A possible exception to this combinatorial model for activation is suggested by the observation that myogenic bHLH factors may be able to independently activate the expression of MEF2. This raises the question as to how mef2 gene transcription is induced by MyoD factors without cooperative activation by MEF2. During skeletal muscle development, mef2c is the first member of the MEF2 family to be expressed. In this study, we have investigated the regulation of a skeletal muscle-specific enhancer from the mouse mef2c gene using a transgenic approach. We show that mef2c is a direct transcriptional target of the MyoD family in vivo via an essential E box in the skeletal muscle enhancer of mef2c, and we show that mef2c is not a direct target for autoregulation by MEF2. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:1021 / 1032
页数:12
相关论文
共 53 条
[1]   MULTIPLE REGULATORY ELEMENTS CONTRIBUTE DIFFERENTIALLY TO MUSCLE CREATINE-KINASE ENHANCER ACTIVITY IN SKELETAL AND CARDIAC-MUSCLE [J].
AMACHER, SL ;
BUSKIN, JN ;
HAUSCHKA, SD .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (05) :2753-2764
[2]   DETERMINATION OF THE CONSENSUS BINDING-SITE FOR MEF2 EXPRESSED IN MUSCLE AND BRAIN REVEALS TISSUE-SPECIFIC SEQUENCE CONSTRAINTS [J].
ANDRES, V ;
CERVERA, M ;
MAHDAVI, V .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (40) :23246-23249
[3]  
[Anonymous], 1994, MANIPULATING MOUSE E
[4]   Muscle differentiation: more complexity to the network of myogenic regulators [J].
Arnold, HH ;
Winter, B .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1998, 8 (05) :539-544
[5]  
Arnold HH, 1996, INT J DEV BIOL, V40, P345
[6]   An A/T-rich cis-element is essential for rat angiotensin II type 1A receptor transcription in vascular smooth muscle cells [J].
Beason, KB ;
Acuff, CG ;
Steinhelper, ME ;
Elton, TS .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 1999, 1444 (01) :25-34
[7]   Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression [J].
Bergstrom, DA ;
Penn, BH ;
Strand, A ;
Perry, RLS ;
Rudnicki, MA ;
Tapscott, SJ .
MOLECULAR CELL, 2002, 9 (03) :587-600
[8]   The transcription factor MEF2C-null mouse exhibits complex vascular malformations and reduced cardiac expression of angiopoietin 1 and VEGF [J].
Bi, WZ ;
Drake, CJ ;
Schwarz, JJ .
DEVELOPMENTAL BIOLOGY, 1999, 211 (02) :255-267
[9]   Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins [J].
Black, BL ;
Olson, EN .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :167-196
[10]   THE MOUSE MRF4 PROMOTER IS TRANS-ACTIVATED DIRECTLY AND INDIRECTLY BY MUSCLE-SPECIFIC TRANSCRIPTION FACTORS [J].
BLACK, BL ;
MARTIN, JF ;
OLSON, EN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (07) :2889-2892