Oxidative stress-related increase in ubiquitination in early coronary atherogenesis

被引:47
作者
Herrmann, J
Gulati, R
Napoli, C
Woodrum, JE
Lerman, LO
Rodriguez-Porcel, M
Sica, V
Simari, RD
Ciechanover, A
Lerman, A
机构
[1] Mayo Clin, Div Cardiovasc Dis, Rochester, MN USA
[2] Mayo Clin, Div Hypertens, Rochester, MN USA
[3] Univ Naples Federico II, Dept Med & Clin Pathol, Naples, Italy
[4] Technion Israel Inst Technol, Rappaport Inst Res Med Sci, Haifa, Israel
关键词
coronary artery disease; proteasome; ubiquitin;
D O I
10.1096/fj.02-0841fje
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ubiquitin-proteasome system (UPS) is involved in the removal of damaged proteins and the activation of transcription factors, such as nuclear-factor-kappaB. Recent reports, however, questioned the functional activity of the UPS under conditions of increased oxidative stress, such as experimental hypercholesterolemia, which was the objective of our study. Pigs were placed on a normal chow diet (N) or on a hypercholesterolemic diet without (HC) or with vitamin C and E supplementation (HC+VIT) for 12 weeks. Compared with N, plasma concentration of total cholesterol increased in both HC and HC+VIT [76 +/- 21 vs. 400 +/- 148 (P<0.05) and 329 +/- 102 (P<0.05) mg/dL], whereas increase in lipid peroxidation, as assessed by LDL-malondialdehyde plasma concentration, was found in HC but not in HC+VIT [6.6 +/- 0.7 vs. 8.5 +/- 0.3 (P<0.05) and 6.8 +/- 0.7 nmol/mg protein]. In comparison with N, the level of ubiquitin conjugates in the coronary artery, as assessed by immunoblotting, increased by 42% in HC but not in HC+VIT and was localized predominantly to media vascular smooth muscle cells by immunostaining. There was no difference in proteasome proteolytic activity among the study groups. These results demonstrate that the UPS is functionally active in early atherogenesis despite increase in oxidative stress with important repercussions in the pathophysiology and therapy of cardiovascular diseases.
引用
收藏
页码:1730 / +
页数:16
相关论文
共 44 条
[1]   Polyubiquitin is a new phenotypic marker of contractile vascular smooth muscle cells [J].
Adam, PJ ;
Weissberg, PL ;
Cary, NRB ;
Shanahan, CM .
CARDIOVASCULAR RESEARCH, 1997, 33 (02) :416-421
[2]  
Adamo AM, 1999, J NEUROSCI RES, V55, P523, DOI 10.1002/(SICI)1097-4547(19990215)55:4<523::AID-JNR12>3.0.CO
[3]  
2-Q
[4]  
AEBI H, 1984, METHOD ENZYMOL, V105, P121
[5]  
ALLAIN CC, 1974, CLIN CHEM, V20, P470
[6]   Protein oxidation in aging, disease, and oxidative stress [J].
Berlett, BS ;
Stadtman, ER .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (33) :20313-20316
[7]   Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion [J].
Bulteau, AL ;
Lundberg, KC ;
Humphries, KM ;
Sadek, HA ;
Szweda, PA ;
Friguet, B ;
Szweda, LI .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (32) :30057-30063
[8]  
Ciechanover A, 2000, J CELL BIOCHEM, P40
[9]   NF-κB:: pivotal mediator or innocent bystander in atherogenesis? [J].
Collins, T ;
Cybulsky, MI .
JOURNAL OF CLINICAL INVESTIGATION, 2001, 107 (03) :255-264
[10]   Degradation of oxidized proteins by the 20S proteasome [J].
Davies, KJA .
BIOCHIMIE, 2001, 83 (3-4) :301-310