Lyapunov approach to the soliton stability in highly dispersive systems .1. Fourth order nonlinear Schrodinger equations

被引:26
作者
Karpman, VI
机构
[1] Ctr. Plasma Phys./Nonlinear Dynam., Racah Institute of Physics, Hebrew University
关键词
D O I
10.1016/0375-9601(96)00231-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The stability of solitons, described by fourth order nonlinear Schrodinger equations with arbitrary power nonlinearities, is studied by means of the Lyapunov approach. From the results obtained it follows that the solitons are stable at pD < 4, where p is the power of nonlinearity and D is the number of space dimensions.
引用
收藏
页码:254 / 256
页数:3
相关论文
共 15 条
[1]  
IVANOV BA, 1983, FIZ NIZK TEMP+, V9, P845
[2]   Stabilization of soliton instabilities by higher order dispersion: KdV-type equations [J].
Karpman, VI .
PHYSICS LETTERS A, 1996, 210 (1-2) :77-84
[3]   SOLITONS OF THE 4TH-ORDER NONLINEAR SCHRODINGER-EQUATION [J].
KARPMAN, VI .
PHYSICS LETTERS A, 1994, 193 (04) :355-358
[4]   INFLUENCE OF HIGH-ORDER DISPERSION ON SELF-FOCUSING .2. NUMERICAL INVESTIGATION [J].
KARPMAN, VI ;
SHAGALOV, AG .
PHYSICS LETTERS A, 1991, 160 (06) :538-540
[5]   INFLUENCE OF HIGH-ORDER DISPERSION ON SELF-FOCUSING .1. QUALITATIVE INVESTIGATION [J].
KARPMAN, VI .
PHYSICS LETTERS A, 1991, 160 (06) :531-537
[6]   Lyapunov approach to the soliton stability in highly dispersive systems .2. KdV-type equations [J].
Karpman, VI .
PHYSICS LETTERS A, 1996, 215 (5-6) :257-259
[7]  
KARPMAN VI, IN PRESS
[8]  
KARPMAN VI, 1996, PHYS REV E, V53
[9]   SHARPER CRITERIA FOR THE WAVE COLLAPSE [J].
KUZNETSOV, EA ;
RASMUSSEN, JJ ;
RYPDAL, K ;
TURITSYN, SK .
PHYSICA D-NONLINEAR PHENOMENA, 1995, 87 (1-4) :273-284
[10]   SOLITON STABILITY IN PLASMAS AND HYDRODYNAMICS [J].
KUZNETSOV, EA ;
RUBENCHIK, AM ;
ZAKHAROV, VE .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1986, 142 (03) :103-165