An error model for protein quantification

被引:80
作者
Kreutz, C.
Rodriguez, M. M. Bartolome
Maiwald, T.
Seidl, M.
Blum, H. E.
Mohr, L.
Timmer, J.
机构
[1] Freiburg Ctr Data Anal & Modeling FDM, D-79014 Freiburg, Germany
[2] Univ Freiburg, Dept Phys, D-79014 Freiburg, Germany
[3] Univ Hosp Freiburg, Dept Med 2, D-79106 Freiburg, Germany
关键词
D O I
10.1093/bioinformatics/btm397
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Quantitative experimental data is the critical bottleneck in the modeling of dynamic cellular processes in systems biology. Here, we present statistical approaches improving reproducibility of protein quantification by immunoprecipitation and immunoblotting. Results: Based on a large data set with more than 3600 data points, we unravel that the main sources of biological variability and experimental noise are multiplicative and log-normally distributed. Therefore, we suggest a log-transformation of the data to obtain additive normally distributed noise. After this transformation, common statistical procedures can be applied to analyze the data. An error model is introduced to account for technical as well as biological variability. Elimination of these systematic errors decrease variability of measurements and allow for a more precise estimation of underlying dynamics of protein concentrations in cellular signaling. The proposed error model is relevant for simulation studies, parameter estimation and model selection, basic tools of systems biology.
引用
收藏
页码:2747 / 2753
页数:7
相关论文
共 27 条
[1]  
[Anonymous], 1998, INTRO BOOTSTRAP
[2]  
[Anonymous], 1998, Practical nonparametric statistics
[3]   LIKELIHOOD RATIOS, POSTERIOR ODDS AND INFORMATION CRITERIA [J].
ATKINSON, AC .
JOURNAL OF ECONOMETRICS, 1981, 16 (01) :15-20
[4]   Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis [J].
Bentele, M ;
Lavrik, I ;
Ulrich, M ;
Stösser, S ;
Heermann, DW ;
Kalthoff, H ;
Krammer, PH ;
Eils, R .
JOURNAL OF CELL BIOLOGY, 2004, 166 (06) :839-851
[5]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[6]   Variance-stabilizing transformations for two-color microarrays [J].
Durbin, BP ;
Rocke, DM .
BIOINFORMATICS, 2004, 20 (05) :660-U190
[7]  
Huber Wolfgang, 2002, Bioinformatics, V18 Suppl 1, pS96
[8]   Testing for differentially-expressed genes by maximum-likelihood analysis of microarray data [J].
Ideker, T ;
Thorsson, V ;
Siegel, AF ;
Hood, LE .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (06) :805-817
[9]   Western blotting [J].
Kurien, BT ;
Scofield, RH .
METHODS, 2006, 38 (04) :283-293
[10]  
Limpert E, 2001, BIOSCIENCE, V51, P341, DOI 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO