Diffusion Tensor Imaging Reliably Differentiates Patients with Schizophrenia from Healthy Volunteers

被引:77
作者
Ardekani, Babak A. [1 ,2 ]
Tabesh, Ali [1 ]
Sevy, Serge [3 ,4 ,5 ]
Robinson, Delbert G. [3 ,4 ,5 ]
Bilder, Robert M. [6 ]
Szeszko, Philip R. [3 ,4 ,5 ]
机构
[1] Nathan S Kline Inst Psychiat Res, Ctr Adv Brain Imaging, Orangeburg, NY 10962 USA
[2] NYU, Sch Med, Dept Psychiat, New York, NY USA
[3] Feinstein Inst Med Res, Ctr Psychiat Neurosci, Manhasset, NY USA
[4] Zucker Hillside Hosp, Glen Oaks, NY USA
[5] Albert Einstein Coll Med, Dept Psychiat & Behav Sci, Bronx, NY 10467 USA
[6] Univ Calif Los Angeles, Geffen Sch Med, Semel Inst Neurosci & Human Behav, Los Angeles, CA USA
基金
美国国家卫生研究院;
关键词
brain; magnetic resonance imaging; discriminant analysis; automated pattern recognition; diffusion tensor imaging; schizophrenia; mean diffusivity; fractional anisotropy; WHITE-MATTER ABNORMALITIES; SUPPORT VECTOR MACHINES; VOXEL-BASED MORPHOMETRY; 1ST-EPISODE SCHIZOPHRENIA; PATTERN-CLASSIFICATION; BIPOLAR DISORDER; MRI; REGISTRATION; ANISOTROPY; MATHEMATICS;
D O I
10.1002/hbm.20995
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The objective of this research was to determine whether fractional anisotropy (FA) and mean diffusivity (MD) maps derived from diffusion tensor imaging (DTI) of the brain are able to reliably differentiate patients with schizophrenia from healthy volunteers. DTI and high resolution structural magnetic resonance scans were acquired in 50 patients with schizophrenia and 50 age-and sex-matched healthy volunteers. FA and MD maps were estimated from the DTI data and spatially normalized to the Montreal Neurologic Institute standard stereotactic space. Individuals were divided randomly into two groups of 50, a training set, and a test set, each comprising 25 patients and 25 healthy volunteers. A pattern classifier was designed using Fisher's linear discriminant analysis (LDA) based on the training set of images to categorize individuals in the test set as either patients or healthy volunteers. Using the FA maps, the classifier correctly identified 94% of the cases in the test set (96% sensitivity and 92% specificity). The classifier achieved 98% accuracy (96% sensitivity and 100% specificity) when using the MD maps as inputs to distinguish schizophrenia patients from healthy volunteers in the test dataset. Utilizing FA and MD data in combination did not significantly alter the accuracy (96% sensitivity and specificity). Patterns of water self-diffusion in the brain as estimated by DTI can be used in conjunction with automated pattern recognition algorithms to reliably distinguish between patients with schizophrenia and normal control subjects. Hum Brain Mapp 32: 1-9, 2011. (C) 2010 Wiley-Liss, Inc.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 46 条
[1]  
[Anonymous], 2001, Pattern Classification
[2]   MRI study of white matter diffusion anisotropy in schizophrenia [J].
Ardekani, BA ;
Nierenberg, J ;
Hoptman, MJ ;
Javitt, DC ;
Lim, KO .
NEUROREPORT, 2003, 14 (16) :2025-2029
[3]   Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans [J].
Ardekani, BA ;
Guckemus, S ;
Bachman, A ;
Hoptman, MJ ;
Wojtaszek, M ;
Nierenberg, J .
JOURNAL OF NEUROSCIENCE METHODS, 2005, 142 (01) :67-76
[4]   Brain morphometry using diffusion-weighted magnetic resonance imaging: application to schizophrenia [J].
Ardekani, BA ;
Bappal, A ;
D'Angelo, D ;
Ashtari, M ;
Lencz, T ;
Szeszko, PR ;
Butler, PD ;
Javitt, DC ;
Lim, KO ;
Hrabe, J ;
Nierenberg, J ;
Branch, CA ;
Hoptman, MJ .
NEUROREPORT, 2005, 16 (13) :1455-1459
[5]   On the detection of activation patterns using principal components analysis [J].
Ardekani, BA ;
Strother, SC ;
Anderson, JR ;
Law, I ;
Paulson, OB ;
Kanno, I ;
Rottenberg, DA .
QUANTITATIVE FUNCTIONAL BRAIN IMAGING WITH POSITRON EMISSION TOMOGRAPHY, 1998, :253-257
[6]   A FULLY-AUTOMATIC MULTIMODALITY IMAGE REGISTRATION ALGORITHM [J].
ARDEKANI, BA ;
BRAUN, M ;
HUTTON, BF ;
KANNO, I ;
IIDA, H .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1995, 19 (04) :615-623
[7]   MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
BIOPHYSICAL JOURNAL, 1994, 66 (01) :259-267
[8]   Shaving diffusion tensor images in discriminant analysis: A study into schizophrenia [J].
Caan, M. W. A. ;
Vermeer, K. A. ;
van Vliet, L. J. ;
Majoie, C. B. L. M. ;
Peters, B. D. ;
den Heeten, G. J. ;
Vos, F. M. .
MEDICAL IMAGE ANALYSIS, 2006, 10 (06) :841-849
[9]   Temporal Lobe and "Default" Hemodynamic Brain Modes Discriminate Between Schizophrenia and Bipolar Disorder [J].
Calhoun, Vince D. ;
Maciejewski, Paul K. ;
Pearlson, Godfrey D. ;
Kiehl, Kent A. .
HUMAN BRAIN MAPPING, 2008, 29 (11) :1265-1275
[10]   Application of principal component analysis to distinguish patients with schizophrenia from healthy controls based on fractional anisotropy measurements [J].
Caprihan, A. ;
Pearlson, G. D. ;
Calhoun, V. D. .
NEUROIMAGE, 2008, 42 (02) :675-682