Catalytic effect of Zr and Hf on hydrogen de sorption/absorption of NaAlH4 and LiAlH4

被引:61
作者
Suttisawat, Yindee
Rangsunvigit, Pramoch [1 ]
Kitiyanan, Boonyarach
Muangsin, Nongnuj
Kulprathipanja, Santi
机构
[1] Chulalongkorn Univ, Petr & Petrochem Coll, Bangkok 10330, Thailand
[2] Chulalongkorn Univ, Fac Sci, Dept Chem, Bangkok 10330, Thailand
[3] UOP LLC, Des Plaines, IL 60017 USA
关键词
NaAlH4; LiAlH4; hydrogen storage; hydrogen desorption;
D O I
10.1016/j.ijhydene.2006.07.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The main objective of this work was to investigate the effect of two transition metals (0-9 mol% ZrCl4 and HfCl4) on hydrogen desorption/absorption of NaAlH4 and LiAlH4. The hydrogen desorption was carried out over a wide temperature range of 25-280 degrees C while the hydrogen absorption took place at 125 degrees C and between 50-125 degrees C for NaAlH4 and LiAlH4, respectively, with the same pressure of 11 MPa. The result revealed that the transition metals (Zr and Hf) could improve the kinetics of the hydrogen desorption on NaAlH4. NaAlH4 doped with HfCl4 released hydrogen at the lower temperature than that of ZrCl4-doped NaAlH4. In addition, the rate of hydrogen desorption increased with increasing the amount of HfCl4 doping. However, the maximum hydrogen capacity of similar to 5.5 wt% was obtained from the first desorption, and dropped to 2.2-2.6 wt% in the subsequent cycles. This may be because of, after the hydrogen desorption, the hydrides melt due to the high temperature resulted in agglomeration of the hydrides and segregation of Al. XRD results showed the formation of NaCl after milling of NaAlH4 with 4mol% HfCl4 and no evidence of any Hf-containing phase. However, with 10 mol% HfCl4, the formation between Al and Hf in the form of Al3Hf was observed. This compound may act as catalyst in the reversible hydrogen desorption/absorption. For LiAlH4, ZrCl4 or HfCl4 also enhanced the kinetics of desorption of LiAlH4. Moreover, it was observed that LiAlH4 released hydrogen during the milling. After the hydrogen desorption from LiAlH4, no hydrogen absorption was observed for the undoped hydride or that doped with HfCl4 or ZrCl4. This may be because of the instability of LiAlH4. Moreover, milling and dopant may also destabilize the structure of LiAlH4 causing the irreversibility of hydrogen desorption/absorption on LiAlH4. (c) 2006 Intemrntional Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1277 / 1285
页数:9
相关论文
共 20 条
[1]   Hydrogen desorption kinetics in transition metal modified NaAlH4 [J].
Anton, DL .
JOURNAL OF ALLOYS AND COMPOUNDS, 2003, 356 :400-404
[2]   Rapid solid-state transformation of tetrahedral [AlH4]- into octahedral [AlH6]3- in lithium aluminohydride [J].
Balema, VP ;
Dennis, KW ;
Pecharsky, VK .
CHEMICAL COMMUNICATIONS, 2000, (17) :1665-1666
[3]   Solid state phase transformations in LiAlH4 during high-energy ball-milling [J].
Balema, VP ;
Pecharsky, VK ;
Dennis, KW .
JOURNAL OF ALLOYS AND COMPOUNDS, 2000, 313 (1-2) :69-74
[4]   Titanium catalyzed solid-state transformations in LiAlH4 during high-energy ball-milling [J].
Balema, VP ;
Wiench, JW ;
Dennis, KW ;
Pruski, M ;
Pecharsky, VK .
JOURNAL OF ALLOYS AND COMPOUNDS, 2001, 329 (1-2) :108-114
[5]   Ti-doped NaAlH4 as a hydrogen-storage material -: preparation by Ti-catalyzed hydrogenation of aluminum powder in conjunction with sodium hydride [J].
Bogdanovic, B ;
Schwickardi, M .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2001, 72 (02) :221-223
[6]   Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials [J].
Bogdanovic, B ;
Schwickardi, M .
JOURNAL OF ALLOYS AND COMPOUNDS, 1997, 253 (1-2) :1-9
[7]   Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials [J].
Bogdanovic, B ;
Brand, RA ;
Marjanovic, A ;
Schwickardi, M ;
Tölle, J .
JOURNAL OF ALLOYS AND COMPOUNDS, 2000, 302 (1-2) :36-58
[8]   Reversible hydrogen storage via titanium-catalyzed LiAlH4 and Li3AlH6 [J].
Chen, J ;
Kuriyama, N ;
Xu, Q ;
Takeshita, HT ;
Sakai, T .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (45) :11214-11220
[9]   Factors affecting hydrogen release from lithium alanate (LiAlH4) [J].
Easton, DS ;
Schneibel, JH ;
Speakman, SA .
JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 398 (1-2) :245-248
[10]   X-ray absorption study of Ti-activated sodium aluminum hydride [J].
Graetz, J ;
Reilly, JJ ;
Johnson, J ;
Ignatov, AY ;
Tyson, TA .
APPLIED PHYSICS LETTERS, 2004, 85 (03) :500-502