Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex

被引:205
作者
Görnemann, J [1 ]
Kotovic, KM [1 ]
Hujer, K [1 ]
Neugebauer, KM [1 ]
机构
[1] Max Planck Inst Mol Cell Biol & Genet, D-01307 Dresden, Germany
关键词
D O I
10.1016/j.molcel.2005.05.007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Coupling between transcription and pre-mRNA splicing is a key regulatory mechanism in gene expression. Here, we investigate cotranscriptional spliceosome assembly in yeast, using in vivo crosslinking to determine the distribution of spliceosome components along intron-containing genes. Accumulation of the U1, U2, and U5 small nuclear ribonucleoprotein particles (snRNPs) and the 3 ' splice site binding factors Mud2p and BBP was detected in patterns indicative of progressive and complete spliceosome assembly; recruitment of the nineteen complex (NTC) component Prp19p suggests that splicing catalysis is also cotranscriptional. The separate dynamics of the U1, U2, and U5 snRNPs are consistent with stepwise recruitment of individual snRNPs rather than a preformed "penta-snRNP," as recently proposed. Finally, we show that the cap binding complex (CBC) is necessary, but not sufficient, for cotranscriptional spliceosome assembly. Thus, the demonstration of an essential link between CBC and spliceosome assembly in vivo indicates that 5 ' end capping couples pre-mRNA splicing to transcription.
引用
收藏
页码:53 / 63
页数:11
相关论文
共 62 条
[1]   THE YEAST MUD2 PROTEIN - AN INTERACTION WITH PRP11 DEFINES A BRIDGE BETWEEN COMMITMENT COMPLEXES AND U2 SNRNP ADDITION [J].
ABOVICH, N ;
LIAO, XLC ;
ROSBASH, M .
GENES & DEVELOPMENT, 1994, 8 (07) :843-854
[2]   Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals [J].
Abovich, N ;
Rosbash, M .
CELL, 1997, 89 (03) :403-412
[3]   Three-dimensional structure of the native spliceosome by cryo-electron microscopy [J].
Azubel, M ;
Wolf, SG ;
Sperling, J ;
Sperling, R .
MOLECULAR CELL, 2004, 15 (05) :833-839
[4]   The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC [J].
Berglund, JA ;
Chua, K ;
Abovich, N ;
Reed, R ;
Rosbash, M .
CELL, 1997, 89 (05) :781-787
[5]   SPLICE SITE SELECTION, RATE OF SPLICING, AND ALTERNATIVE SPLICING ON NASCENT TRANSCRIPTS [J].
BEYER, AL ;
OSHEIM, YN .
GENES & DEVELOPMENT, 1988, 2 (06) :754-765
[6]   Genome-wide analysis reveals an unexpected function for the Drosophila splicing factor U2AF50 in the nuclear export of intronless mRNAs [J].
Blanchette, M ;
Labourier, E ;
Green, RE ;
Brenner, SE ;
Rio, DC .
MOLECULAR CELL, 2004, 14 (06) :775-786
[7]   Exploring functional relationships between components of the gene expression machinery [J].
Burckin, T ;
Nagel, R ;
Mandel-Gutfreund, Y ;
Shiue, L ;
Clark, TA ;
Chong, JL ;
Chang, TH ;
Squazzo, S ;
Hartzog, G ;
Ares, M .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2005, 12 (02) :175-182
[8]   The Prp19p-associated complex in spliceosome activation [J].
Chan, SP ;
Kao, DI ;
Tsai, WY ;
Cheng, SC .
SCIENCE, 2003, 302 (5643) :279-282
[9]   Specific alterations of U1-C protein or U1 small nuclear RNA can eliminate the requirement of Prp28p, an essential DEAD box splicing factor [J].
Chen, JYF ;
Stands, L ;
Staley, JP ;
Jackups, RR ;
Latus, LJ ;
Chang, TH .
MOLECULAR CELL, 2001, 7 (01) :227-232
[10]  
Chiara MD, 1996, MOL CELL BIOL, V16, P3317