Quantum chaos in atom optics: Using phase noise to model continuous momentum and position measurement

被引:15
作者
Dyrting, S
Milburn, GJ
机构
[1] Department of Physics, University of Queensland
来源
QUANTUM AND SEMICLASSICAL OPTICS | 1996年 / 8卷 / 03期
关键词
D O I
10.1088/1355-5111/8/3/017
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the effect of noise on the quantum nonlinear motion of a two-level atom in a laser standing wave. This system has recently been shown to exhibit dynamic localization in the atomic momentum. Noise is introduced through the phase of the standing wave, and has one of two forms: Weiner noise or Ornstein-Uhlenbeck noise. Using the theory of stochastic Hamiltonians we derive a master equation to describe the quantum mechanical evolution of the momentum statistics. We show that the Weiner noise process is then equivalent to a continuous measurement of the momentum of the atom, and the Ornstein-Uhlenbeck process describes a measurement of the position of the atom up to the period of the optical potential. We study the effect of noise when the classical dynamics shows global chaos.
引用
收藏
页码:541 / 555
页数:15
相关论文
共 21 条
  • [1] BARDOFF PJ, 1994, PHYS REV LETT, V74, P4083
  • [2] QUANTUM-MECHANICAL MODEL FOR CONTINUOUS POSITION MEASUREMENTS
    CAVES, CM
    MILBURN, GJ
    [J]. PHYSICAL REVIEW A, 1987, 36 (12): : 5543 - 5555
  • [3] CONTINUOUS QUANTUM MEASUREMENTS AND CHAOS
    DITTRICH, T
    GRAHAM, R
    [J]. PHYSICAL REVIEW A, 1990, 42 (08): : 4647 - 4660
  • [4] DISSIPATIVE NONLINEAR QUANTUM DYNAMICS IN ATOMIC OPTICS
    DYRTING, S
    MILBURN, GJ
    [J]. PHYSICAL REVIEW A, 1995, 51 (04): : 3136 - 3147
  • [5] CHAOS, QUANTUM RECURRENCES, AND ANDERSON LOCALIZATION
    FISHMAN, S
    GREMPEL, DR
    PRANGE, RE
    [J]. PHYSICAL REVIEW LETTERS, 1982, 49 (08) : 509 - 512
  • [6] Gardiner C.W., 1985, Handbook of stochastic methods, V3
  • [7] GRAHAM R, 1992, CHAOS QUANTUM CHAOS
  • [8] GRAHAM R, 1995, IN PRESS PHYS REV A
  • [9] Haake F., 1991, QUANTUM SIGNATURES C
  • [10] Lichtenberg A., 1992, Regular and Chaotic Motion