The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast

被引:220
作者
Clemens, S
Antosiewicz, DM
Ward, JM
Schachtman, DP
Schroeder, JI
机构
[1] Univ Calif San Diego, Dept Biol, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Ctr Mol Genet, La Jolla, CA 92093 USA
[3] Univ Tubingen, Inst Bot, D-72076 Tubingen, Germany
[4] Univ Adelaide, Dept Bot, Adelaide, SA 5005, Australia
关键词
D O I
10.1073/pnas.95.20.12043
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nonessential metal ions such as cadmium are most likely transported across plant membranes via transporters for essential cations, To identify possible pathways for Cd2+ transport we tested putative plant cation transporters for Cd2+ uptake activity by expressing cDNAs in Saccharomyces cerevisiae and found that expression of one clone, LCT1, renders the growth of yeast more sensitive to cadmium. Ion flux assays showed that Cd2+ sensitivity is correlated with an increase in Cd2+ uptake. LCT1-dependent Cd2+ uptake is saturable, lies in the high-affinity range (apparent K-M for Cd2+ = 33 mu M) and is sensitive to block by La3+ and Ca2+. Growth assays demonstrated a sensitivity of LCT1-expressing yeast cells to extracellular millimolar Ca2+ concentrations. LCT1-dependent increase in Ca2+ uptake correlated with the observed phenotype, Furthermore, LCT1 complements a yeast disruption mutant in the MIDI gene, a non-LCT1-homologous yeast gene encoding a membrane C-a2+ influx system required for recovery from the mating response, We conclude that LCT1 mediates the uptake of Ca2+ and Cd2+ in yeast and may therefore represent a first plant cDNA encoding a plant Ca2+ uptake or an organellar Ca2+ transport pathway in plants and may contribute to transport of the toxic metal Cd2+ across plant membranes.
引用
收藏
页码:12043 / 12048
页数:6
相关论文
共 47 条
[1]   NON-SELECTIVE CONDUCTANCE IN CALCIUM CHANNELS OF FROG-MUSCLE - CALCIUM SELECTIVITY IN A SINGLE-FILE PORE [J].
ALMERS, W ;
MCCLESKEY, EW .
JOURNAL OF PHYSIOLOGY-LONDON, 1984, 353 (AUG) :585-608
[2]   FUNCTIONAL EXPRESSION OF A PROBABLE ARABIDOPSIS-THALIANA POTASSIUM CHANNEL IN SACCHAROMYCES-CEREVISIAE [J].
ANDERSON, JA ;
HUPRIKAR, SS ;
KOCHIAN, LV ;
LUCAS, WJ ;
GABER, RF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (09) :3736-3740
[3]   Study of the interactions of cadmium and zinc ions with cellular calcium homoeostasis using F-19-NMR spectroscopy [J].
Benters, J ;
Flogel, U ;
Schafer, T ;
Leibfritz, D ;
Hechtenberg, S ;
Beyersmann, D .
BIOCHEMICAL JOURNAL, 1997, 322 :793-799
[4]   CALCIUM REGULATION IN PLANT-CELLS AND ITS ROLE IN SIGNALING [J].
BUSH, DS .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1995, 46 :95-122
[5]   ISOLATION AND GENETIC-ANALYSIS OF SACCHAROMYCES-CEREVISIAE MUTANTS SUPER-SENSITIVE TO G1 ARREST BY A-FACTOR AND ALPHA-FACTOR PHEROMONES [J].
CHAN, RK ;
OTTE, CA .
MOLECULAR AND CELLULAR BIOLOGY, 1982, 2 (01) :11-20
[6]  
CUNNINGHAM KW, 1994, J EXP BIOL, V196, P157
[7]   Promises and prospects of phytoremediation [J].
Cunningham, SD ;
Ow, DW .
PLANT PHYSIOLOGY, 1996, 110 (03) :715-719
[8]   A novel iron-regulated metal transporter from plants identified by functional expression in yeast [J].
Eide, D ;
Broderius, M ;
Fett, J ;
Guerinot, ML .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (11) :5624-5628
[9]   Hyperpolarization-activated Ca2+-permeable channels in the plasma membrane of tomato cells [J].
Gelli, A ;
Blumwald, E .
JOURNAL OF MEMBRANE BIOLOGY, 1997, 155 (01) :35-45
[10]  
Hille B., 1992, IONIC CHANNELS EXCIT