VASCULAR SMOOTH-MUSCLE-CELL ACTIVATION: PROTEOMICS POINT OF VIEW

被引:34
作者
Cecchettini, Antonella [1 ,2 ]
Rocchiccioli, Silvia [1 ]
Boccardi, Claudia [1 ]
Citti, Lorenzo [1 ]
机构
[1] CNR, Inst Clin Physiol, I-56100 Pisa, Italy
[2] Univ Pisa, Dept Human Morphol & Appl Biol, Pisa, Italy
来源
INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY, VOL 288 | 2011年 / 288卷
关键词
Vascular smooth-muscle cells; Phenotype proteomics; Cardiovascular disorders; Biomarker discovery; Target validation; Gene therapy; PERFORMANCE LIQUID-CHROMATOGRAPHY; CHIMERIC HAMMERHEAD RIBOZYME; GROWTH-FACTOR-B; IN-VIVO; ANGIOTENSIN-II; QUANTITATIVE-ANALYSIS; MASS-SPECTROMETRY; OXIDATIVE STRESS; GENE-TRANSFER; NEOINTIMA FORMATION;
D O I
10.1016/B978-0-12-386041-5.00002-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Vascular smooth-muscle cells (VSMCs) are the main component of the artery medial layer. Thanks to their great plasticity, when stimulated by external inputs, VSMCs react by changing morphology and functions and activating new signaling pathways while switching others off. In this way, they are able to increase the cell proliferation, migration, and synthetic capacity significantly in response to vascular injury assuming a more dedifferentiated state. In different states of differentiation, VSMCs are characterized by various repertories of activated pathways and differentially expressed proteins. In this context, great interest is addressed to proteomics technology, in particular to differential proteomics. In recent years, many authors have investigated proteomics in order to identify the molecular factors putatively involved in VSMC phenotypic modulation, focusing on metabolic networks linking the differentially expressed proteins. Some of the identified proteins may be markers of pathology and become useful tools of diagnosis. These proteins could also represent appropriately validated targets and be useful either for prevention, if related to early events of atherosclerosis, or for treatment, if specific of the acute, mid, and late phases of the pathology. RNA-dependent gene silencing, obtained against the putative targets with high selective and specific molecular tools, might be able to reverse a pathological drift and be suitable candidates for innovative therapeutic approaches.
引用
收藏
页码:43 / 99
页数:57
相关论文
共 239 条
[1]   Tropomyosin 4 expression is enhanced in dedifferentiating smooth muscle cells in vitro and during atherogenesis [J].
Abouhamed, M ;
Reichenberg, S ;
Robenek, H ;
Plenz, G .
EUROPEAN JOURNAL OF CELL BIOLOGY, 2003, 82 (09) :473-482
[2]   Positive- and negative-acting Kruppel-like transcription factors bind a transforming growth factor β control element required for expression of the smooth muscle cell differentiation marker SM22α in vivo [J].
Adam, PJ ;
Regan, CP ;
Hautmann, MB ;
Owens, GK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (48) :37798-37806
[3]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[4]   MicroRNAs Are Necessary for Vascular Smooth Muscle Growth, Differentiation, and Function [J].
Albinsson, Sebastian ;
Suarez, Yajaira ;
Skoura, Athanasia ;
Offermanns, Stefan ;
Miano, Joseph M. ;
Sessa, William C. .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2010, 30 (06) :1118-U80
[5]   Cardiovascular effects of sphingosine-1-phosphate and other sphingomyelin metabolites [J].
Alewijnse, AE ;
Peters, SLM ;
Michel, MC .
BRITISH JOURNAL OF PHARMACOLOGY, 2004, 143 (06) :666-684
[6]   In vitro and in silico processes to identify differentially expressed proteins [J].
Allet, N ;
Barrillat, N ;
Baussant, T ;
Boiteau, C ;
Botti, P ;
Bougueleret, L ;
Budin, N ;
Canet, D ;
Carraud, S ;
Chiappe, D ;
Christmann, N ;
Colinge, J ;
Cusin, I ;
Dafflon, N ;
Depresle, B ;
Fasso, I ;
Frauchiger, P ;
Gaertner, H ;
Gleizes, A ;
Gonzalez-Couto, E ;
Jeandenans, C ;
Karmime, A ;
Kowall, T ;
Lagache, S ;
Mahé, E ;
Masselot, A ;
Mattou, H ;
Moniatte, M ;
Niknejad, A ;
Paolini, M ;
Perret, F ;
Pinaud, N ;
Ranno, F ;
Raimondi, S ;
Reffas, S ;
Regamey, PO ;
Rey, PA ;
Rodriguez-Tomé, P ;
Rose, K ;
Rossellat, G ;
Saudrais, C ;
Schmidt, C ;
Villain, M ;
Zwahlen, C .
PROTEOMICS, 2004, 4 (08) :2333-2351
[7]   Candidate-based proteomics in the search for biomarkers of cardiovascular disease [J].
Anderson, L .
JOURNAL OF PHYSIOLOGY-LONDON, 2005, 563 (01) :23-60
[8]   Stable gene transfer to muscle using non-integrating lentiviral vectors [J].
Apolonia, Luis ;
Waddington, Simon N. ;
Fernandes, Carolina ;
Ward, Natalie J. ;
Bouma, Gerben ;
Blundell, Michael P. ;
Thrasher, Adrian J. ;
Collins, Mary K. ;
Philpott, Nicola J. .
MOLECULAR THERAPY, 2007, 15 (11) :1947-1954
[9]   Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework [J].
Atkinson, AJ ;
Colburn, WA ;
DeGruttola, VG ;
DeMets, DL ;
Downing, GJ ;
Hoth, DF ;
Oates, JA ;
Peck, CC ;
Schooley, RT ;
Spilker, BA ;
Woodcock, J ;
Zeger, SL .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2001, 69 (03) :89-95
[10]   A Large U3 Deletion Causes Increased In Vivo Expression From a Nonintegrating Lentiviral Vector [J].
Bayer, Matthew ;
Kantor, Boris ;
Cockrell, Adam ;
Ma, Hong ;
Zeithaml, Brian ;
Li, Xiangping ;
McCown, Thomas ;
Kafri, Tal .
MOLECULAR THERAPY, 2008, 16 (12) :1968-1976