Determination of the Escherichia coli S-nitrosoglutathione response network using integrated biochemical and systems analysis

被引:30
作者
Jarboe, Laura R. [1 ]
Hyduke, Daniel R. [1 ]
Tran, Linh M. [1 ]
Chou, Katherine J. Y. [1 ]
Liao, James C. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
关键词
D O I
10.1074/jbc.M706018200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During infection or denitrification, bacteria encounter reactive nitrogen species. Although the molecular targets of and defensive response against nitric oxide (NO) in Escherichia coli are well studied, the response elements specific to S-nitrosothiols are less clear. Previously, we employed an integrated systems biology approach to unravel the E. coli NO-response network. Here we use a similar approach to confirm that S-nitrosoglutathione (GSNO) primarily impacts the metabolic and regulatory programs of E. coli in minimal medium by reaction with homocysteine and cysteine and subsequent disruption of the methionine biosynthesis pathway. Targeting of homocysteine and cysteine results in altered regulatory activity of MetJ, MetR, and CysB, activation of the stringent response and growth inhibition. Deletion of metJ or supplementation with methionine strongly attenuated the effect of GSNO on growth and gene expression. Furthermore, GSNO inhibited the ArcAB two-component system. Consistent with the underlying nitrosative and thiol-oxidative chemistry, growth inhibition and the majority of the regulatory perturbations were dependent upon GSNO internalization by the Dpp dipeptide transporter. Contrastingly, perturbation of NsrR appeared to be a result of the submicromolar levels of NO released from GSNO and did not require GSNO internalization.
引用
收藏
页码:5148 / 5157
页数:10
相关论文
共 53 条
[1]   PEPTIDE-TRANSPORT AND CHEMOTAXIS IN ESCHERICHIA-COLI AND SALMONELLA-TYPHIMURIUM - CHARACTERIZATION OF THE DIPEPTIDE PERMEASE (DPP) AND THE DIPEPTIDE-BINDING PROTEIN [J].
ABOUHAMAD, WN ;
MANSON, M ;
GIBSON, MM ;
HIGGINS, CF .
MOLECULAR MICROBIOLOGY, 1991, 5 (05) :1035-1047
[2]  
[Anonymous], J CHEM SOC PERK APR
[3]   The yjeB (nsrR) gene of Escherichia coli encodes a nitric oxide-sensitive transcriptional regulator [J].
Bodenmiller, DM ;
Spiro, S .
JOURNAL OF BACTERIOLOGY, 2006, 188 (03) :874-881
[4]  
COTTER PA, 1992, FEMS MICROBIOL LETT, V91, P31
[5]   A non-haem iron centre in the transcription factor NorR senses nitric oxide [J].
D'Autréaux, B ;
Tucker, NP ;
Dixon, R ;
Spiro, S .
NATURE, 2005, 437 (7059) :769-772
[6]   Regulation of the flavorubredoxin nitric oxide reductase gene in Escherichia coli:: nitrate repression, nitrite induction, and possible post-transcription control [J].
da Costa, PN ;
Teixeira, M ;
Saraiva, LM .
FEMS MICROBIOLOGY LETTERS, 2003, 218 (02) :385-393
[7]   One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J].
Datsenko, KA ;
Wanner, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6640-6645
[8]   GENETIC AND REDOX DETERMINANTS OF NITRIC-OXIDE CYTOTOXICITY IN A SALMONELLA-TYPHIMURIUM MODEL [J].
DEGROOTE, MA ;
GRANGER, D ;
XU, YS ;
CAMPBELL, G ;
PRINCE, R ;
FANG, FC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6399-6403
[9]   Homocysteine antagonism of nitric oxide-related cytostasis in Salmonella typhimurium [J].
DeGroote, MA ;
Testerman, T ;
Xu, YS ;
Stauffer, G ;
Fang, FC .
SCIENCE, 1996, 272 (5260) :414-417
[10]   Modulation by nitric oxide of metalloprotein regulatory activities [J].
Drapier, JC ;
Bouton, C .
BIOESSAYS, 1996, 18 (07) :549-556