Role of nitric oxide in subventricular zone neurogenesis

被引:40
作者
Matarredona, ER [1 ]
Murillo-Carretero, M [1 ]
Moreno-López, B [1 ]
Estrada, C [1 ]
机构
[1] Univ Cadiz, Fac Med, Area Fisiol, Cadiz 11003, Spain
关键词
neural precursor; cell proliferation; nitric oxide synthase; adult neurogenesis; epidermal growth factor;
D O I
10.1016/j.brainresrev.2005.01.001
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A possible role of nitric oxide (NO) in adult neurogenesis has been suggested based on anatomical findings showing that subventricular zone (SVZ) neuroblasts are located close to NO-producing cells, and on the known antiproliferative actions of NO in many cell types. Experiments have been performed in rodents with systemic and intracerebroventricular administrations of the NO synthase (NOS) inhibitor L-NAME. NOS inhibition leads to significant increases in the number of proliferating cells in the SVZ and olfactory bulb (OB). NO exerts its cytostatic action preferentially on the cell population expressing nestin but not beta III-tubulin, which may correspond to the type C cells described in the SVZ. The negative effect of NO on SVZ cell proliferation has also been confirmed in SVZ primary cultures. An inhibition of the tyrosine kinase activity of the epidermal growth factor receptor (EGFR) is described as one of the molecular mechanisms responsible for the antiproliferative, effect of NO in SVZ cells. Biochemical data supporting this conclusion has been obtained using the neuroblastoma cell line NB69, which endogenously expresses the EGFR. In these cells, the antimitotic action of NO occurs upon inhibition of the EGFR tyrosine phosphorylation, probably by a direct S-nitrosylation of the receptor. The latest published reports on NO and neurogenesis indicate that NO physiologically participates in the control of adult neurogenesis by modulating the proliferation and fate of the SVZ progenitor cells. These effects might be partially due to a direct inhibition of the EGFR by S-nitrosylation. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:355 / 366
页数:12
相关论文
共 79 条
[1]  
Anderson MF, 2002, DEV BRAIN RES, V134, P115
[2]   Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone [J].
Banasr, M ;
Hery, M ;
Printemps, R ;
Daszuta, A .
NEUROPSYCHOPHARMACOLOGY, 2004, 29 (03) :450-460
[3]   Nitric oxide inhibits ornithine decarboxylase via S-nitrosylation of cysteine 360 in the active site of the enzyme [J].
Bauer, PM ;
Buga, GM ;
Fukuto, JM ;
Pegg, AE ;
Ignarro, LJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (37) :34458-34464
[4]   Nitric oxide inhibits ornithine decarboxylase by S-nitrosylation [J].
Bauer, PM ;
Fukuto, JM ;
Buga, GM ;
Pegg, AE ;
Ignarro, LJ .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 262 (02) :355-358
[5]   Endogenous nitric oxide synthesis: Biological functions and pathophysiology [J].
Bredt, DS .
FREE RADICAL RESEARCH, 1999, 31 (06) :577-596
[6]   TRANSIENT NITRIC-OXIDE SYNTHASE NEURONS IN EMBRYONIC CEREBRAL CORTICAL PLATE, SENSORY GANGLIA, AND OLFACTORY EPITHELIUM [J].
BREDT, DS ;
SNYDER, SH .
NEURON, 1994, 13 (02) :301-313
[7]   LOCALIZATION OF NITRIC-OXIDE SYNTHASE INDICATING A NEURAL ROLE FOR NITRIC-OXIDE [J].
BREDT, DS ;
HWANG, PM ;
SNYDER, SH .
NATURE, 1990, 347 (6295) :768-770
[8]   NITRIC-OXIDE SYNTHASE PROTEIN AND MESSENGER-RNA ARE DISCRETELY LOCALIZED IN NEURONAL POPULATIONS OF THE MAMMALIAN CNS TOGETHER WITH NADPH DIAPHORASE [J].
BREDT, DS ;
GLATT, CE ;
HWANG, PM ;
FOTUHI, M ;
DAWSON, TM ;
SNYDER, SH .
NEURON, 1991, 7 (04) :615-624
[9]   Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats [J].
Brezun, JM ;
Daszuta, A .
NEUROSCIENCE, 1999, 89 (04) :999-1002
[10]   The localization of neuronal nitric oxide synthase may influence its role in neuronal precursor proliferation and synaptic maintenance [J].
Chen, JJ ;
Tu, YJ ;
Moon, C ;
Matarazzo, V ;
Palmer, AM ;
Ronnett, GV .
DEVELOPMENTAL BIOLOGY, 2004, 269 (01) :165-182