Bicriterion seriation methods for skew-symmetric matrices

被引:11
作者
Brusco, MJ [1 ]
Stahl, S [1 ]
机构
[1] Florida State Univ, Coll Business, Dept Mkt, Tallahassee, FL 32306 USA
关键词
D O I
10.1348/000711005X63908
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The decomposition of an asymmetric proximity matrix into its symmetric and skew-symmetric components is a well-known principle in combinatorial data analysis. The seriation of the skew-symmetric component can emphasize information corresponding to the sign or absolute magnitude of the matrix elements, and the choice of objective criterion can have a profound impact on the ordering. In this research note, we propose a bicriterion approach for seriation of a skew-symmetric matrix incorporating both sign and magnitude information. Two numerical demonstrations reveal that the bicriterion procedure is an effective alternative to direct seriation of the skew-symmetric matrix, facilitating favourable trade-offs among sign and magnitude information.
引用
收藏
页码:333 / 343
页数:11
相关论文
共 23 条
[1]  
[Anonymous], 1986, Multidimensional Data Analysis
[2]   APPLICATIONS OF COMBINATORIAL PROGRAMMING TO DATA-ANALYSIS - SERIATION USING ASYMMETRIC PROXIMITY MEASURES [J].
BAKER, FB ;
HUBERT, LJ .
BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1977, 30 (NOV) :154-164
[3]   MAJORITY-RULE UNDER TRANSITIVITY CONSTRAINTS [J].
BLIN, JM ;
WHINSTON, AB .
MANAGEMENT SCIENCE SERIES A-THEORY, 1974, 20 (11) :1439-1440
[4]   MAJORITY RULE UNDER TRANSITIVITY CONSTRAINTS [J].
BOWMAN, VJ ;
COLANTON.CS .
MANAGEMENT SCIENCE SERIES A-THEORY, 1973, 19 (09) :1029-1041
[5]   Optimal least-squares unidimensional scaling: Improved branch-and-bound procedures and comparison to dynamic programming [J].
Brusco, MJ ;
Stahl, S .
PSYCHOMETRIKA, 2005, 70 (02) :253-270
[6]   Identifying a reordering of rows and columns for multiple proximity matrices using multiobjective programming [J].
Brusco, MJ .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2002, 46 (06) :731-745
[7]   An Interactive multiobjective programming approach to combinatorial data analysis [J].
Brusco, MJ ;
Stahl, S .
PSYCHOMETRIKA, 2001, 66 (01) :5-24
[8]   Seriation of asymmetric matrices using integer linear programming [J].
Brusco, MJ .
BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2001, 54 :367-375
[9]   MAXIMUM LIKELIHOOD PAIRED COMPARISON RANKING BY LINEAR PROGRAMMING [J].
DECANI, JS .
BIOMETRIKA, 1969, 56 (03) :537-&
[10]  
DECANI JS, 1972, BIOMETRIKA, V59, P131