A Highly Efficient Approach to Protein Interactome Mapping Based on Collaborative Filtering Framework

被引:59
作者
Luo, Xin [1 ,2 ]
You, Zhuhong [2 ]
Zhou, Mengchu [3 ]
Li, Shuai [2 ]
Leung, Hareton [2 ]
Xia, Yunni [1 ]
Zhu, Qingsheng [1 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
[2] Hong Kong Polytech Univ, Dept Comp, Hong Kong 999077, Hong Kong, Peoples R China
[3] New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
CANCER SYSTEMS BIOLOGY; NETWORK EVOLUTION; INTERACTION MAP; RECONSTRUCTION; IDENTIFICATION; RELIABILITY; COMPLEXES; DESIGN; ATLAS;
D O I
10.1038/srep07702
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The comprehensive mapping of protein-protein interactions (PPIs) is highly desired for one to gain deep insights into both fundamental cell biology processes and the pathology of diseases. Finely-set small-scale experiments are not only very expensive but also inefficient to identify numerous interactomes despite their high accuracy. High-throughput screening techniques enable efficient identification of PPIs; yet the desire to further extract useful knowledge from these data leads to the problem of binary interactome mapping. Network topology-based approaches prove to be highly efficient in addressing this problem; however, their performance deteriorates significantly on sparse putative PPI networks. Motivated by the success of collaborative filtering (CF)-based approaches to the problem of personalized-recommendation on large, sparse rating matrices, this work aims at implementing a highly efficient CF-based approach to binary interactome mapping. To achieve this, we first propose a CF framework for it. Under this framework, we model the given data into an interactome weight matrix, where the feature-vectors of involved proteins are extracted. With them, we design the rescaled cosine coefficient to model the inter-neighborhood similarity among involved proteins, for taking the mapping process. Experimental results on three large, sparse datasets demonstrate that the proposed approach outperforms several sophisticated topology-based approaches significantly.
引用
收藏
页数:10
相关论文
共 47 条
[1]   Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions [J].
Adomavicius, G ;
Tuzhilin, A .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (06) :734-749
[2]   Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae [J].
Babu, Mohan ;
Vlasblom, James ;
Pu, Shuye ;
Guo, Xinghua ;
Graham, Chris ;
Bean, Bjoern D. M. ;
Burston, Helen E. ;
Vizeacoumar, Franco J. ;
Snider, Jamie ;
Phanse, Sadhna ;
Fong, Vincent ;
Tam, Yuen Yi C. ;
Davey, Michael ;
Hnatshak, Olha ;
Bajaj, Navgeet ;
Chandran, Shamanta ;
Punna, Thanuja ;
Christopolous, Constantine ;
Wong, Victoria ;
Yu, Analyn ;
Zhong, Gouqing ;
Li, Joyce ;
Stagljar, Igor ;
Conibear, Elizabeth ;
Wodak, Shoshana J. ;
Emili, Andrew ;
Greenblatt, Jack F. .
NATURE, 2012, 489 (7417) :585-+
[3]   Ontologies in biology: Design, applications and future challenges [J].
Bard, JBL ;
Rhee, SY .
NATURE REVIEWS GENETICS, 2004, 5 (03) :213-222
[4]   Evidence for Network Evolution in an Arabidopsis Interactome Map [J].
Braun, Pascal ;
Carvunis, Anne-Ruxandra ;
Charloteaux, Benoit ;
Dreze, Matija ;
Ecker, Joseph R. ;
Hill, David E. ;
Roth, Frederick P. ;
Vidal, Marc ;
Galli, Mary ;
Balumuri, Padmavathi ;
Bautista, Vanessa ;
Chesnut, Jonathan D. ;
Kim, Rosa Cheuk ;
de los Reyes, Chris ;
Gilles, Patrick, II ;
Kim, Christopher J. ;
Matrubutham, Uday ;
Mirchandani, Jyotika ;
Olivares, Eric ;
Patnaik, Suswapna ;
Quan, Rosa ;
Ramaswamy, Gopalakrishna ;
Shinn, Paul ;
Swamilingiah, Geetha M. ;
Wu, Stacy ;
Ecker, Joseph R. ;
Dreze, Matija ;
Byrdsong, Danielle ;
Dricot, Amelie ;
Duarte, Melissa ;
Gebreab, Fana ;
Gutierrez, Bryan J. ;
MacWilliams, Andrew ;
Monachello, Dario ;
Mukhtar, M. Shahid ;
Poulin, Matthew M. ;
Reichert, Patrick ;
Romero, Viviana ;
Tam, Stanley ;
Waaijers, Selma ;
Weiner, Evan M. ;
Vidal, Marc ;
Hill, David E. ;
Braun, Pascal ;
Galli, Mary ;
Carvunis, Anne-Ruxandra ;
Cusick, Michael E. ;
Dreze, Matija ;
Romero, Viviana ;
Roth, Frederick P. .
SCIENCE, 2011, 333 (6042) :601-607
[5]   The BioGRID interaction database: 2013 update [J].
Chatr-aryamontri, Andrew ;
Breitkreutz, Bobby-Joe ;
Heinicke, Sven ;
Boucher, Lorrie ;
Winter, Andrew ;
Stark, Chris ;
Nixon, Julie ;
Ramage, Lindsay ;
Kolas, Nadine ;
O'Donnell, Lara ;
Reguly, Teresa ;
Breitkreutz, Ashton ;
Sellam, Adnane ;
Chen, Daici ;
Chang, Christie ;
Rust, Jennifer ;
Livstone, Michael ;
Oughtred, Rose ;
Dolinski, Kara ;
Tyers, Mike .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D816-D823
[6]   Increasing confidence of protein interactomes using network topological metrics [J].
Chen, Jin ;
Hsu, Wynne ;
Lee, Mong Li ;
Ng, See-Kiong .
BIOINFORMATICS, 2006, 22 (16) :1998-2004
[7]   Increasing the reliability of protein interactomes [J].
Chua, Hon Nian ;
Wong, Limsoon .
DRUG DISCOVERY TODAY, 2008, 13 (15-16) :652-658
[8]   Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions [J].
Chua, Hon Nian ;
Sung, Wing-Kin ;
Wong, Limsoon .
BIOINFORMATICS, 2006, 22 (13) :1623-1630
[9]   Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae [J].
Collins, Sean R. ;
Kemmeren, Patrick ;
Zhao, Xue-Chu ;
Greenblatt, Jack F. ;
Spencer, Forrest ;
Holstege, Frank C. P. ;
Weissman, Jonathan S. ;
Krogan, Nevan J. .
MOLECULAR & CELLULAR PROTEOMICS, 2007, 6 (03) :439-450
[10]  
Demsar J, 2006, J MACH LEARN RES, V7, P1