Crystal structure of the global regulator FlhD from Escherichia coli at 1.8 Å resolution

被引:13
作者
Campos, A
Zhang, RG
Alkire, RW
Matsumura, P
Westbrook, EM
机构
[1] Univ Illinois, Coll Med, Dept Microbiol & Immunol, Chicago, IL 60612 USA
[2] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA
[3] Mol Biol Consortium, Chicago, IL 60439 USA
关键词
D O I
10.1046/j.1365-2958.2001.02247.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
FlhD is a 13.3 kDa transcriptional activator protein of flagellar genes and a global regulator. FlhD activates the transcription of class II operons in the flagellar regulon when complexed with a second protein FlhC (21.5 kDa). FlhD also regulates other expression systems in Escherichia coli. We are seeking to understand this plasticity of FlhD's DNA-binding specificity and, to this end, we have determined the crystal structure of the isolated FlhD protein. The structure was solved by substituting seleno-methionine for natural sulphur-methionine in FlhD, crystallizing the protein and determining the structure factor phases by the method of multiple-energy anomalous dispersion (MAD). The FlhD protein is dimeric. The dimer is tightly coupled, with an intimate contact surface, implying that the dimer does not easily dissociate. The FlhD monomer is predominantly alpha -helical. The C-termini of both FlhD monomers (residues 83-116) are completely disrupted by crystal packing, implying that this region of FlhD is highly flexible. However, part of the C-terminus structure in chain A (residues 83-98) was modelled using a native FlhD crystal. What is seen in chain A suggests a classic DNA-binding, helix-turn-helix (HTH) motif. FlhD does not bind DNA by itself, so it may be that the DNA-binding HTH motif becomes rigidly defined only when FlhD forms a complex with some other protein, such as FlhC. If this were true, it might explain how FlhD exhibits plasticity in its DNA-binding specificity, as each partner protein with which it forms a complex could allosterically affect the binding specificity of its HTH motif. A disulphide bridge is seen between the unique cysteine residues (Cys-65) of FlhD native homodimers. Alanine substitution at Cys-65 does not affect FlhD transcription activator activity, suggesting that the disulphide bond is not necessary for either dimer stability or this function of FlhD. Electrostatic potential analysis indicates that dimeric FlhD has a negatively charged surface.
引用
收藏
页码:567 / 580
页数:14
相关论文
共 50 条
[1]   AN INVESTIGATION OF PROTEIN SUBUNIT AND DOMAIN INTERFACES [J].
ARGOS, P .
PROTEIN ENGINEERING, 1988, 2 (02) :101-113
[2]   Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol -: disulfide status [J].
Åslund, F ;
Zheng, M ;
Beckwith, J ;
Storz, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (11) :6161-6165
[3]  
AUSUBEL FM, 1989, CURRENT PROTOCOLS MO, V2
[4]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[5]   FLAGELLAR TRANSCRIPTIONAL ACTIVATORS FLBB AND FLAI - GENE-SEQUENCES AND 5' CONSENSUS SEQUENCES OF OPERONS UNDER FLBB AND FLAI CONTROL [J].
BARTLETT, DH ;
FRANTZ, BB ;
MATSUMURA, P .
JOURNAL OF BACTERIOLOGY, 1988, 170 (04) :1575-1581
[6]   Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm [J].
Bessette, PH ;
Åslund, F ;
Beckwith, J ;
Georgiou, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (24) :13703-13708
[7]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[8]   Crystallization and preliminary X-ray analysis of FlhD from Escherichia coli [J].
Campos, A ;
Matsumura, P ;
Volz, K .
JOURNAL OF STRUCTURAL BIOLOGY, 1998, 123 (03) :269-271
[9]  
CAMPOS A, 2001, MOL MICROBIOL, V39
[10]   HELIX TO HELIX PACKING IN PROTEINS [J].
CHOTHIA, C ;
LEVITT, M ;
RICHARDSON, D .
JOURNAL OF MOLECULAR BIOLOGY, 1981, 145 (01) :215-250