Hamiltonian vortices and reconnection in a magnetized plasma

被引:40
作者
Kuvshinov, BN
Lakhin, VP
Pegoraro, F
Schep, TJ
机构
[1] EURATOM Assoc, FOM, Inst Plasmafys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands
[2] Univ Pisa, Dept Phys, I-56100 Pisa, Italy
[3] INFM, Pisa, Italy
关键词
D O I
10.1017/S0022377898006655
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Hamiltonian vortices and reconnection in magnetized plasmas are investigated analytically and numerically using a two-fluid model. The equations are written in the Lagrangian form of three fields that are advected with different velocities. This system can be considered as a generalization and extension of the two-dimensional Euler equation for an ordinary fluid. It is pointed out that these equations allow solutions in. the form of singular current-vortex filaments, drift-Alfven vortices and magnetic islands, and admit collisionless magnetic reconnection where magnetic flux is converted into electron momentum and ion vorticity.
引用
收藏
页码:727 / 736
页数:10
相关论文
共 19 条
[1]   Algorithm 758: VLUGR2: A vectorizable adaptive-grid solver for PDEs in 2D [J].
Blom, JG ;
Trompert, RA ;
Verwer, JG .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (03) :302-328
[2]  
CAFARO E, 1997, P INT WORKSH NONL MH
[3]   PLASMA FILAMENTATION IN THE RIJNHUIZEN-TOKAMAK RTP [J].
CARDOZO, NJL ;
SCHULLER, FC ;
BARTH, CJ ;
CHU, CC ;
PIJPER, FJ ;
LOK, J ;
OOMENS, AAM .
PHYSICAL REVIEW LETTERS, 1994, 73 (02) :256-259
[4]   STATIONARY SPECTRUM OF STRONG TURBULENCE IN MAGNETIZED NONUNIFORM PLASMA [J].
HASEGAWA, A ;
MIMA, K .
PHYSICAL REVIEW LETTERS, 1977, 39 (04) :205-208
[5]  
JOVANOVIC D, 1998, IN PRESS PLASMA PHYS
[6]  
KADOMTSEV BB, 1984, JETP LETT+, V39, P269
[7]   PLASMA TRANSPORT IN TOKAMAKS [J].
KADOMTSEV, BB .
NUCLEAR FUSION, 1991, 31 (07) :1301-1314
[8]  
KADOMTSEV BB, 1974, ZH EKSP TEOR FIZ, V38, P283
[9]   HAMILTONIAN-FORMULATION OF LOW-FREQUENCY, NONLINEAR PLASMA DYNAMICS [J].
KUVSHINOV, BN ;
PEGORARO, F ;
SCHEP, TJ .
PHYSICS LETTERS A, 1994, 191 (3-4) :296-300
[10]  
Lamb H., 1932, Hydrodynamics