Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli

被引:506
作者
Kerner, MJ
Naylor, DJ
Ishihama, Y
Maier, T
Chang, HC
Stines, AP
Georgopoulos, C
Frishman, D
Hayer-Hartl, M
Mann, M
Hartl, FU
机构
[1] Max Planck Inst Biochem, Dept Cellular Biochem, D-82152 Martinsried, Germany
[2] Univ So Denmark, Ctr Expt Bioinformat, Dept Biochem & Mol Biol, DK-5230 Odense, Denmark
[3] Ctr Med Univ Geneva, Dept Microbiol & Med Mol, CH-1211 Geneva, Switzerland
[4] GSF Natl Res Ctr Environm & Hlth, Inst Bioinformat, D-85764 Neuherberg, Germany
[5] Tech Univ Munich, Wissensch Zentrum Weihenstephan, Dept Genome Oriented Bioinformat, D-85354 Freising Weihenstephan, Germany
关键词
D O I
10.1016/j.cell.2005.05.028
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The E. coli chaperonin GroEL and its cofactor GroES promote protein folding by sequestering nonnative polypeptides in a cage-like structure. Here we define the contribution of this system to protein folding across the entire E. coli proteome. Approximately 250 different proteins interact with GroEL, but most of these can utilize either GroEL or the upstream chaperones trigger factor (TF) and DnaK for folding. Obligate GroEL-dependence is limited to only similar to 85 substrates, including 13 essential proteins, and occupying more than 75% of GroEL capacity. These proteins appear to populate kinetically trapped intermediates during folding; they are stabilized by TF/DnaK against aggregation but reach native state only upon transfer to GroEL/GroES. Interestingly, substantially enriched among the GroEL substrates are proteins with (beta alpha)(8) TIM-barrel domains. We suggest that the chaperonin system may have facilitated the evolution of this fold into a versatile platform for the implementation of numerous enzymatic functions.
引用
收藏
页码:209 / 220
页数:12
相关论文
共 41 条
[1]   Function of trigger factor and DnaK in multidomain protein folding: Increase in yield at the expense of folding speed [J].
Agashe, VR ;
Guha, S ;
Chang, HC ;
Genevaux, P ;
Hayer-Hartl, M ;
Stemp, M ;
Georgopoulos, C ;
Hartl, FU ;
Barral, JM .
CELL, 2004, 117 (02) :199-209
[2]   THE CRYSTAL-STRUCTURE OF THE BACTERIAL CHAPERONIN GROEL AT 2.8-ANGSTROM [J].
BRAIG, K ;
OTWINOWSKI, Z ;
HEGDE, R ;
BOISVERT, DC ;
JOACHIMIAK, A ;
HORWICH, AL ;
SIGLER, PB .
NATURE, 1994, 371 (6498) :578-586
[3]   Dual function of protein confinement in chaperonin-assisted protein folding [J].
Brinker, A ;
Pfeifer, G ;
Kerner, MJ ;
Naylor, DJ ;
Hartl, FU ;
Hayer-Hartl, M .
CELL, 2001, 107 (02) :223-233
[4]   GroEL/GroES-mediated folding of a protein too large to be encapsulated [J].
Chaudhuri, TK ;
Farr, GW ;
Fenton, WA ;
Rospert, S ;
Horwich, AL .
CELL, 2001, 107 (02) :235-246
[5]   Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases [J].
Chiti, F ;
Calamai, M ;
Taddei, N ;
Stefani, M ;
Ramponi, G ;
Dobson, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 :16419-16426
[6]   Trigger factor and DnaK cooperate in folding of newly synthesized proteins [J].
Deuerling, E ;
Schulze-Specking, A ;
Tomoyasu, T ;
Mogk, A ;
Bukau, B .
NATURE, 1999, 400 (6745) :693-696
[7]  
Dobson CM, 1998, ANGEW CHEM INT EDIT, V37, P868, DOI 10.1002/(SICI)1521-3773(19980420)37:7<868::AID-ANIE868>3.0.CO
[8]  
2-H
[9]   Protein folding in the cell: Competing models of chaperonin function [J].
Ellis, RJ ;
Hartl, FU .
FASEB JOURNAL, 1996, 10 (01) :20-26
[10]   In vivo observation of polypeptide flux through the bacterial chaperonin system [J].
Ewalt, KL ;
Hendrick, JP ;
Houry, WA ;
Hartl, FU .
CELL, 1997, 90 (03) :491-500