The stability of the TFIIA-TBP-DNA complex is dependent on the sequence of the TATAAA element

被引:48
作者
Stewart, JJ
Stargell, LA [1 ]
机构
[1] Colorado State Univ, Dept Biochem & Mol Biol, Ft Collins, CO 80523 USA
[2] Univ Hawaii, Pacific Biomed Res Ctr, Honolulu, HI 96813 USA
关键词
D O I
10.1074/jbc.M105276200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To determine the mechanistic differences between canonical and noncanonical TATA elements, we compared the functional activity of two sequences: TATAAA (canonical) and CATAAA (noncanonical). The TATAAA element can support high levels of transcription in vivo, whereas the CATAAA element is severely defective for this function.. This dramatic functional difference is not likely to be due to a difference in TBP (TATA-binding protein) binding efficiency because protein-DNA complex studies in vitro indicate little difference between the two DNA sequences in the formation and stability of the TBP-DNA complex. In addition, the binding and stability of the TFIIB-TBP-DNA complex is similar for the two elements. In striking contrast, the TFIIA-TBP-DNA complex is significantly less stable on the CATAAA element when compared with the TATAAA element. A role for TFIIA in distinguishing between TATAAA and CATAAA in vivo was tested by fusing. a subunit of TFIIA to TBP. We found that fusion of TFIIA to TBP dramatically increases transcription from CATAAA, in yeast cells. Taken together, these results indicate that the stability of the TFIIA-TBP complex depends strongly on the sequence of the core promoter element and that the TFIIA-TBP complex plays an important function in recognizing optimal promoters in vivo.
引用
收藏
页码:30078 / 30084
页数:7
相关论文
共 73 条
[1]   AN ATP-DEPENDENT INHIBITOR OF TBP BINDING TO DNA [J].
AUBLE, DT ;
HAHN, S .
GENES & DEVELOPMENT, 1993, 7 (05) :844-856
[2]   MOT1, A GLOBAL REPRESSOR OF RNA-POLYMERASE-II TRANSCRIPTION, INHIBITS TBP BINDING TO DNA BY AN ATP-DEPENDENT MECHANISM [J].
AUBLE, DT ;
HANSEN, KE ;
MUELLER, CGF ;
LANE, WS ;
THORNER, J ;
HAHN, S .
GENES & DEVELOPMENT, 1994, 8 (16) :1920-1934
[3]   5 INTERMEDIATE COMPLEXES IN TRANSCRIPTION INITIATION BY RNA POLYMERASE-II [J].
BURATOWSKI, S ;
HAHN, S ;
GUARENTE, L ;
SHARP, PA .
CELL, 1989, 56 (04) :549-561
[4]   Biochemistry and structural biology of transcription factor IID (TFIID) [J].
Burley, SK ;
Roeder, RG .
ANNUAL REVIEW OF BIOCHEMISTRY, 1996, 65 :769-799
[5]   Reevaluation of transcriptional regulation by TATA-binding protein oligomerization: Predominance of monomers [J].
Campbell, KM ;
Ranallo, RT ;
Stargell, LA ;
Lumb, KJ .
BIOCHEMISTRY, 2000, 39 (10) :2633-2638
[6]   CONNECTING A PROMOTER-BOUND PROTEIN TO TBP BYPASSES THE NEED FOR A TRANSCRIPTIONAL ACTIVATION DOMAIN [J].
CHATTERJEE, S ;
STRUHL, K .
NATURE, 1995, 374 (6525) :820-822
[7]   SATURATION MUTAGENESIS OF A YEAST-HIS3 TATA ELEMENT - GENETIC-EVIDENCE FOR A SPECIFIC TATA-BINDING PROTEIN [J].
CHEN, W ;
STRUHL, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (08) :2691-2695
[8]   Assembly of the isomerized TFIIA-TFIID-TATA ternary complex is necessary and sufficient for gene activation [J].
Chi, TH ;
Carey, M .
GENES & DEVELOPMENT, 1996, 10 (20) :2540-2550
[9]  
Clemens KE, 1996, MOL CELL BIOL, V16, P4656
[10]   NOT1(CDC39), NOT2(CDC36), NOT3, AND NOT4 ENCODE A GLOBAL-NEGATIVE REGULATOR OF TRANSCRIPTION THAT DIFFERENTIALLY AFFECTS TATA-ELEMENT UTILIZATION [J].
COLLART, MA ;
STRUHL, K .
GENES & DEVELOPMENT, 1994, 8 (05) :525-537