Measurements of T1-relaxation in ex vivo prostate tissue at 132 μT

被引:48
作者
Busch, Sarah [1 ,2 ]
Hatridge, Michael [1 ,2 ]
Moessle, Michael [1 ,2 ]
Myers, Whittier [1 ,2 ]
Wong, Travis [1 ,2 ]
Mueck, Michael [3 ]
Chew, Kevin [4 ]
Kuchinsky, Kyle [4 ]
Simko, Jeffry [4 ,5 ]
Clarke, John [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Giessen, Dept Phys, Giessen, Germany
[4] Univ Calif San Francisco, Dept Anat Pathol, San Francisco, CA 94143 USA
[5] Univ Calif San Francisco, Dept Urol, San Francisco, CA USA
基金
美国国家卫生研究院;
关键词
prostate cancer; T1; contrast; map; microtesla MRI; SQUID; MICROTESLA MAGNETIC-FIELDS; MRI; CANCER; LOCALIZATION; CARCINOMA; METAL;
D O I
10.1002/mrm.24177
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The proton T1 was measured at 132 mu T in ex vivo prostate tissue specimens from radical prostatectomies of 35 patients with prostate cancer. Each patient provided two specimens. The NMR and MRI measurements involved proton repolarization, a field of typically 150 mT and detection of the 5.6-kHz signal with a superconducting quantum interference device. Values of T1 varied from 41 to 86 ms. Subsequently, the percentages of tissue types were determined histologically. The theoretical image contrast is quantified for each case by d = [1 T1(more cancer)/T1(less cancer)]. A linear fit of d versus difference in percentage cancer yields T1 (100% cancer)/T1 (0% cancer) = 0.70 +/- 0.05 with correlation coefficient R2 = 0.30. Two-dimensional T1 maps for four specimens demonstrate variation within a single specimen. These results suggest that MR images with T1 contrast established at ultra-low fields may discriminate prostate cancer from normal prostate tissue in vivo without a contrast agent. Magn Reson Med, 2012. (C) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:1138 / 1145
页数:8
相关论文
共 29 条
[1]  
[Anonymous], 2010, Cancer Facts Figures 2010
[2]   J-coupling nuclear magnetic resonance spectroscopy of liquids in nT fields [J].
Bernarding, J ;
Buntkowsky, G ;
Macholl, S ;
Hartwig, S ;
Burghoff, M ;
Trahms, L .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (03) :714-715
[3]  
Clarke J., 2005, The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems, V1
[4]   SQUID-detected magnetic resonance imaging in microtesla fields [J].
Clarke, John ;
Hatridge, Michael ;
Moessle, Michael .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2007, 9 :389-413
[5]   Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging [J].
Fuetterer, Jurgen J. ;
Heijmink, Stijn W. T. P. J. ;
Scheenen, Tom W. J. ;
Veltman, Jeroen ;
Huisman, Henkjan J. ;
Vos, Pieter ;
Hulsbergen-Van de Kaa, Christina A. ;
Witjes, J. Alfred ;
Krabbe, Paul F. M. ;
Heerschap, Arend ;
Barentsz, Jelle O. .
RADIOLOGY, 2006, 241 (02) :449-458
[6]   HISTOLOGIC GRADING AND STAGING OF PROSTATIC-CARCINOMA [J].
GLEASON, DF .
AMERICAN JOURNAL OF SURGICAL PATHOLOGY, 1981, 5 (02) :193-193
[7]  
Haacke E.M., 1999, Physical Principles and Sequence Design
[8]   Prostate Cancer: Multiparametric MR Imaging for Detection, Localization, and Staging [J].
Hoeks, Caroline M. A. ;
Barentsz, Jelle O. ;
Hambrock, Thomas ;
Yakar, Derya ;
Somford, Diederik M. ;
Heijmink, Stijn W. T. P. J. ;
Scheenen, Tom W. J. ;
Vos, Pieter C. ;
Huisman, Henkjan ;
van Oort, Inge M. ;
Witjes, J. Alfred ;
Heerschap, Arend ;
Fuetterer, Jurgen J. .
RADIOLOGY, 2011, 261 (01) :46-66
[9]   CARCINOMA OF THE PROSTATE-GLAND - MR-IMAGING WITH PELVIC PHASED-ARRAY COILS VERSUS INTEGRATED ENDORECTAL PELVIC PHASED-ARRAY COILS [J].
HRICAK, H ;
WHITE, S ;
VIGNERON, D ;
KURHANEWICZ, J ;
KOSCO, A ;
LEVIN, D ;
WEISS, J ;
NARAYAN, P ;
CARROLL, PR .
RADIOLOGY, 1994, 193 (03) :703-709
[10]   How good is MRI at detecting and characterising cancer within the prostate? [J].
Kirkham, Alexander P. S. ;
Emberton, Mark ;
Allen, Clare .
EUROPEAN UROLOGY, 2006, 50 (06) :1163-1175