Interaction of ATP sensor, cAMP sensor, Ca2+ sensor, and voltage-dependent Ca2+ channel in insulin granule exocytosis

被引:137
作者
Shibasaki, T
Sunaga, Y
Fujimoto, K
Kashima, Y
Seino, S [1 ]
机构
[1] Kobe Univ, Grad Sch Med, Div Cellular & Mol Med, Kobe, Hyogo 6500017, Japan
[2] Chiba Univ, Grad Sch Med, Dept Cellular & Mol Med, Chiba 2608670, Japan
关键词
D O I
10.1074/jbc.M309068200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
ATP, cAMP, and Ca2+ are the major signals in the regulation of insulin granule exocytosis in pancreatic beta cells. The sensors and regulators of these signals have been characterized individually. The ATP-sensitive K+ channel, acting as the ATP sensor, couples cell metabolism to membrane potential. cAMP-GEFII, acting as a cAMP sensor, mediates cAMP-dependent, protein kinase A-independent exocytosis, which requires interaction with both Piccolo as a Ca2+ sensor and Rim2 as a Rab3 effector. L-type voltage-dependent Ca2+ channels (VDCCs) regulate Ca2+ influx. In the present study, we demonstrate interactions of these molecules. Sulfonylurea receptor 1, a subunit of ATP-sensitive K+ channels, interacts specifically with cAMP-GEFII through nucleotide-binding fold 1, and the interaction is decreased by a high concentration of cAMP. Localization of cAMP-GEFII overlaps with that of Rim2 in plasma membrane of insulin-secreting MIN6 cells. Localization of Rab3 coincides with that of Rim2. Rim2 mutant lacking the Rab3 binding region, when overexpressed in MIN6 cells, is localized exclusively in cytoplasm, and impairs cAMP-dependent exocytosis in MIN6 cells. In addition, Rim2 and Piccolo bind directly to the alpha(1) 1.2- subunit of VDCC. These results indicate that ATP sensor, cAMP sensor, Ca2+ sensor, and VDCC interact with each other, which further suggests that ATP, cAMP, and Ca2+ signals in insulin granule exocytosis are integrated in a specialized domain of pancreatic beta cells to facilitate stimulus-secretion coupling.
引用
收藏
页码:7956 / 7961
页数:6
相关论文
共 39 条
[1]   Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming [J].
Betz, A ;
Thakur, P ;
Junge, HJ ;
Ashery, U ;
Rhee, JS ;
Scheuss, V ;
Rosenmund, C ;
Rettig, J ;
Brose, N .
NEURON, 2001, 30 (01) :183-196
[2]   COLOCALIZATION OF L-TYPE CA2+ CHANNELS AND INSULIN-CONTAINING SECRETORY GRANULES AND ITS SIGNIFICANCE FOR THE INITIATION OF EXOCYTOSIS IN MOUSE PANCREATIC B-CELLS [J].
BOKVIST, K ;
ELIASSON, L ;
AMMALA, C ;
RENSTROM, E ;
RORSMAN, P .
EMBO JOURNAL, 1995, 14 (01) :50-57
[3]   MAMMALIAN HOMOLOGS OF CAENORHABDITIS-ELEGANS UNC-13 GENE DEFINE NOVEL FAMILY OF C-2-DOMAIN PROTEINS [J].
BROSE, N ;
HOFMANN, K ;
HATA, Y ;
SUDHOF, TC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (42) :25273-25280
[4]  
Brown J C, 1975, Recent Prog Horm Res, V31, P487
[5]  
Calakos N, 1996, PHYSIOL REV, V76, P1
[6]  
CasesLanghoff C, 1996, EUR J CELL BIOL, V69, P214
[7]   Direct interaction of the calcium sensor protein synaptotagmin I with a cytoplasmic domain of the alpha(1)A subunit of the P/Q-type calcium channel [J].
Charvin, N ;
Leveque, C ;
Walker, D ;
Berton, F ;
Raymond, C ;
Kataoka, M ;
ShojiKasai, Y ;
Takahashi, M ;
DeWaard, M ;
Seagar, MJ .
EMBO JOURNAL, 1997, 16 (15) :4591-4596
[8]   Direct interaction of the Rab3 effector RIM with Ca2+ channels, SNAP-25, and synaptotagmin [J].
Coppola, T ;
Magnin-Lüthi, S ;
Perret-Menoud, V ;
Gattesco, S ;
Schiavo, G ;
Regazzi, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (35) :32756-32762
[9]   Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs [J].
de Rooij, J ;
Rehmann, H ;
van Triest, M ;
Cool, RH ;
Wittinghofer, A ;
Bos, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (27) :20829-20836
[10]   Bassoon, a novel zinc-finger CAG/glutamine-repeat protein selectively localized at the active zone of presynaptic nerve terminals [J].
Dieck, ST ;
Sanmartí-Vila, L ;
Langnaese, K ;
Richter, K ;
Kindler, S ;
Soyke, A ;
Wex, H ;
Smalla, KH ;
Kämpf, U ;
Fränzer, JT ;
Stumm, M ;
Garner, CC ;
Gundelfinger, ED .
JOURNAL OF CELL BIOLOGY, 1998, 142 (02) :499-509