Atmospheric lifetimes and fates of selected fragrance materials and volatile model compounds

被引:44
作者
Aschmann, SM
Arey, J
Atkinson, R [1 ]
Simonich, SL
机构
[1] Univ Calif Riverside, Interdepartmental Grad Program Environm Toxicol, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Dept Environm Sci, Riverside, CA 92521 USA
[3] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
[4] Univ Calif Riverside, Air Pollut Res Ctr, Riverside, CA 92521 USA
[5] Procter & Gamble Co, Cincinnati, OH 45241 USA
关键词
D O I
10.1021/es010685i
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fragrance materials are semivolatile organic compounds widely used in consumer products. Despite their generally low volatility, it is expected that a fraction of these compounds will volatilize into the atmosphere, where they can photolyze, react with OH radicals, NO3 radicals and O-3, and/or undergo wet and dry deposition. Using relative rate methods, rate constants have been measured at 296 +/- 2 K for the gas-phase reactions of OH radicals, NO3 radicals, and O-3 with the fragrance materials 1-(1,2,3,4,5,6,7,8-octahydro-2,3,8,8-tetramethyl-2-naphthalenyl)ethanone (OTNE), acetyl cedrene [(3R-(3a,3ab,7b,8aa))-1-(2,3,4,7,8,8a-hexahydro-3,6,8,8-tetramethyl-1H-3a,7-methanoazulen-5-yl)ethan-1-one], and HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethycyclopenta-[gamma]-2-benzopyran) as well as with isochroman which is structurally related to HHGB. Measured rate constants (in cm(3) molecule(-1) s(-1) units) are OH radical reactions [OTNE, (9.85 +/- 0.88) x 10(-11); acetyl cedrene, (7.7 +/- 1.6) x 10(-11); HHCB, (2.6 +/- 0.6) x 10(-11); and isochroman, (3.7 +/- 0.6) x 10(-11)], NO3 radical reactions [OTNE, (1.71 +/- 0.19) x 10(-11) and acetyl cedrene, (4.1 +/- 1.0) x 10(-15)], and O-3 reactions [OTNE, (2.1 +/- 0.5) x 10(-18) and acetyl cedrene, <2.2 x 10(-18)] where the error limits are two least-squares standard deviations. Rate constants for the OH radical reactions predicted by a structure-reactivity estimation method agree well with the measured values. The dominant tropospheric loss processes for the compounds studied are calculated to be in a reaction with OH radicals during daytime and, for OTNE and acetyl cedrene, with NO3 radicals during nighttime. The calculated atmospheric lifetimes due to daytime reaction with the OH radical are a few hours or less for the fragrance materials studied and indicate that these specific compounds will not undergo long-range transport in the atmosphere.
引用
收藏
页码:3595 / 3600
页数:6
相关论文
共 20 条
[1]   RATE CONSTANTS FOR THE GAS-PHASE REACTIONS OF CIS-3-HEXEN-1-OL, CIS-3-HEXENYLACETATE, TRANS-2-HEXENAL, AND LINALOOL WITH OH AND NO3 RADICALS AND O-3 AT 296+/-2 K, AND OH RADICAL FORMATION YIELDS FROM THE O-3 REACTIONS [J].
ATKINSON, R ;
AREY, J ;
ASCHMANN, SM ;
CORCHNOY, SB ;
SHU, YH .
INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 1995, 27 (10) :941-955
[2]   KINETICS AND MECHANISMS OF THE GAS-PHASE REACTIONS OF THE NO3 RADICAL WITH ORGANIC-COMPOUNDS [J].
ATKINSON, R .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1991, 20 (03) :459-507
[3]   Gas-phase tropospheric chemistry of volatile organic compounds .1. Alkanes and alkenes [J].
Atkinson, R .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1997, 26 (02) :215-290
[4]   Atmospheric chemistry of VOCs and NOx [J].
Atkinson, R .
ATMOSPHERIC ENVIRONMENT, 2000, 34 (12-14) :2063-2101
[5]   RATE CONSTANTS FOR THE GAS-PHASE REACTIONS OF OH AND NO3 RADICALS AND O-3 WITH SABINENE AND CAMPHENE AT 296+/-2-K [J].
ATKINSON, R ;
ASCHMANN, SM ;
AREY, J .
ATMOSPHERIC ENVIRONMENT PART A-GENERAL TOPICS, 1990, 24 (10) :2647-2654
[6]   KINETICS AND MECHANISMS OF THE GAS-PHASE REACTIONS OF OZONE WITH ORGANIC-COMPOUNDS UNDER ATMOSPHERIC CONDITIONS [J].
ATKINSON, R ;
CARTER, WPL .
CHEMICAL REVIEWS, 1984, 84 (05) :437-470
[7]   KINETICS OF THE GAS-PHASE REACTIONS OF OH RADICALS WITH A SERIES OF ALPHA,BETA-UNSATURATED CARBONYLS AT 299 +/- 2 K [J].
ATKINSON, R ;
ASCHMANN, SM ;
PITTS, JN .
INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 1983, 15 (01) :75-81
[8]   AN EXPERIMENTAL PROTOCOL FOR THE DETERMINATION OF OH RADICAL RATE CONSTANTS WITH ORGANICS USING METHYL NITRITE PHOTOLYSIS AS AN OH RADICAL SOURCE [J].
ATKINSON, R ;
CARTER, WPL ;
WINER, AM ;
PITTS, JN .
JOURNAL OF THE AIR POLLUTION CONTROL ASSOCIATION, 1981, 31 (10) :1090-1092
[9]   RATE CONSTANTS FOR THE GAS-PHASE REACTIONS OF NITRATE RADICALS WITH A SERIES OF ORGANICS IN AIR AT 298 +/- 1-K [J].
ATKINSON, R ;
PLUM, CN ;
CARTER, WPL ;
WINER, AM ;
PITTS, JN .
JOURNAL OF PHYSICAL CHEMISTRY, 1984, 88 (06) :1210-1215
[10]   RATE CONSTANTS FOR THE GAS-PHASE REACTIONS OF THE NO3 RADICAL WITH A SERIES OF ORGANIC-COMPOUNDS AT 296+/-2-K [J].
ATKINSON, R ;
ASCHMANN, SM ;
PITTS, JN .
JOURNAL OF PHYSICAL CHEMISTRY, 1988, 92 (12) :3454-3457