Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings

被引:178
作者
An, Fengying [1 ]
Zhang, Xing [1 ]
Zhu, Ziqiang [1 ]
Ji, Yusi [1 ]
He, Wenrong [1 ]
Jiang, Zhiqiang [1 ]
Li, Mingzhe [1 ]
Guo, Hongwei [1 ,2 ]
机构
[1] Peking Univ, Coll Life Sci, State Key Lab Prot & Plant Gene Res, Beijing 100871, Peoples R China
[2] Peking Tsinghua Ctr Life Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
gibberellins; ethylene; EIN3/EIL1; HLS1; apical hook; SCARECROW-LIKE; 3; RESPONSE PATHWAY; INSENSITIVE MUTANTS; SIGNAL-TRANSDUCTION; AUXIN BIOSYNTHESIS; THALIANA SEEDLINGS; FLORAL DEVELOPMENT; SEED-GERMINATION; CELL ELONGATION; DELLA;
D O I
10.1038/cr.2012.29
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Dark-grown Arabidopsis seedlings develop an apical hook when germinating in soil, which protects the cotyledons and apical meristematic tissues when protruding through the soil. Several hormones are reported to distinctly modulate this process. Previous studies have shown that ethylene and gibberellins (GAs) coordinately regulate the hook development, although the underlying molecular mechanism is largely unknown. Here we showed that GA(3) enhanced while paclobutrazol repressed ethylene- and EIN3-overexpression (EIN3ox)-induced hook curvature, and della mutant exhibited exaggerated hook curvature, which required an intact ethylene signaling pathway. Genetic study revealed that GA-enhanced hook development was dependent on HOOKLESS 1 (HLS1), a central regulator mediating the input of the multiple signaling pathways during apical hook development. We further found that GA3 induced (and DELLA proteins repressed) HLS1 expression in an ETHYLENE INSENSITIVE 3/EIN3-LIKE 1 (EIN3/EIL1)-dependent manner, whereby EIN3/EIL1 activated HLS1 transcription by directly binding to its promoter. Additionally, DELLA proteins were found to interact with the DNA-binding domains of EIN3/EIL1 and repress EIN3/EIL1-regulated HLS1 expression. Treatment with naphthylphthalamic acid, a polar auxin transport inhibitor, repressed the constitutively exaggerated hook curvature of EIN3ox line and della mutant, supporting that auxin functions downstream of the ethylene and GA pathways in hook development. Taken together, our results identify EIN3/EIL1 as a new class of DELLA-associated transcription factors and demonstrate that GA promotes apical hook formation in cooperation with ethylene partly by inducing the expression of HLS1 via derepression of EIN3/EIL1 functions.
引用
收藏
页码:915 / 927
页数:13
相关论文
共 53 条
[1]  
Abeles F. B., 1992, ETHYLENE PLANT BIOL
[2]   Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function [J].
Achard, P ;
Vriezen, WH ;
Van Der Straeten, D ;
Harberd, NP .
PLANT CELL, 2003, 15 (12) :2816-2825
[3]   EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis [J].
Alonso, JM ;
Hirayama, T ;
Roman, G ;
Nourizadeh, S ;
Ecker, JR .
SCIENCE, 1999, 284 (5423) :2148-2152
[4]   Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis [J].
Alonso, JM ;
Stepanova, AN ;
Solano, R ;
Wisman, E ;
Ferrari, S ;
Ausubel, FM ;
Ecker, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (05) :2992-2997
[5]   Ethylene-Induced Stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 Is Mediated by Proteasomal Degradation of EIN3 Binding F-Box 1 and 2 That Requires EIN2 in Arabidopsis [J].
An, Fengying ;
Zhao, Qiong ;
Ji, Yusi ;
Li, Wenyang ;
Jiang, Zhiqiang ;
Yu, Xiangchun ;
Zhang, Chen ;
Han, Ying ;
He, Wenrong ;
Liu, Yidong ;
Zhang, Shuqun ;
Ecker, Joseph R. ;
Guo, Hongwei .
PLANT CELL, 2010, 22 (07) :2384-2401
[6]   Gibberellins control fruit patterning in Arabidopsis thaliana [J].
Arnaud, Nicolas ;
Girin, Thomas ;
Sorefan, Karim ;
Fuentes, Sara ;
Wood, Thomas A. ;
Lawrenson, Tom ;
Sablowski, Robert ;
Ostergaard, Lars .
GENES & DEVELOPMENT, 2010, 24 (19) :2127-2132
[7]  
Bechtold N, 1998, METH MOL B, V82, P259
[8]   INSENSITIVITY TO ETHYLENE CONFERRED BY A DOMINANT MUTATION IN ARABIDOPSIS-THALIANA [J].
BLEECKER, AB ;
ESTELLE, MA ;
SOMERVILLE, C ;
KENDE, H .
SCIENCE, 1988, 241 (4869) :1086-1089
[9]  
BOERJAN W, 1995, PLANT CELL, V7, P1405, DOI 10.1105/tpc.7.9.1405
[10]   Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins [J].
Chao, QM ;
Rothenberg, M ;
Solano, R ;
Roman, G ;
Terzaghi, W ;
Ecker, JR .
CELL, 1997, 89 (07) :1133-1144