Thermodynamic properties of the kinesin neck-region docking to the catalytic core

被引:127
作者
Rice, S [1 ]
Cui, Y [1 ]
Sindelar, C [1 ]
Naber, N [1 ]
Matuska, M [1 ]
Vale, R [1 ]
Cooke, R [1 ]
机构
[1] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94143 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1016/S0006-3495(03)74992-3
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Kinesin motors move on microtubules by a mechanism that involves a large, ATP-triggered conformational change in which a mechanical element called the neck linker docks onto the catalytic core, making contacts with the core throughout its length. Here, we investigate the thermodynamic properties of this conformational change using electron paramagnetic resonance (EPR) spectroscopy. We placed spin probes at several locations on the human kinesin neck linker and recorded EPR spectra in the presence of microtubules and either 5'-adenylylimidodiphosphate (AMPPNP) or ADP at temperatures of 4-30degreesC. The free-energy change (DeltaG) associated with AMPPNP-induced docking of the neck linker onto the catalytic core is favorable but small, about 3 kJ/mol. In contrast, the favorable enthalpy change (DeltaH) and unfavorable entropy change (TDeltaS) are quite large, about 50 kJ/mol. A mutation in the neck linker, V331A/N332A, results in an unfavorable DeltaG for AMPPNP-induced zipping of the neck linker onto the core and causes motility defects. These results suggest that the kinesin neck linker folds onto the core from a more unstructured state, thereby paying a large entropic cost and gaining a large amount of enthalpy.
引用
收藏
页码:1844 / 1854
页数:11
相关论文
共 48 条
[1]   ENTROPIC ELASTICITY OF LAMBDA-PHAGE DNA [J].
BUSTAMANTE, C ;
MARKO, JF ;
SIGGIA, ED ;
SMITH, S .
SCIENCE, 1994, 265 (5178) :1599-1600
[2]   Role of the kinesin neck linker and catalytic core in microtubule-based motility [J].
Case, RB ;
Rice, S ;
Hart, CL ;
Ly, B ;
Vale, RD .
CURRENT BIOLOGY, 2000, 10 (03) :157-160
[3]   The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain [J].
Case, RB ;
Pierce, DW ;
HomBooher, N ;
Hart, CL ;
Vale, RD .
CELL, 1997, 90 (05) :959-966
[4]   The loud dependence of kinesin's mechanical cycle [J].
Coppin, CM ;
Pierce, DW ;
Hsu, L ;
Vale, RD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (16) :8539-8544
[5]   Kinesin takes one 8-nm step for each ATP that it hydrolyzes [J].
Coy, DL ;
Wagenbach, M ;
Howard, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (06) :3667-3671
[6]  
Creighton T.E., 1993, PROTEINS STRUCTURE M, V2nd
[7]   Alternating site mechanism of the kinesin ATPase [J].
Gilbert, SP ;
Moyer, ML ;
Johnson, KA .
BIOCHEMISTRY, 1998, 37 (03) :792-799
[8]   EVIDENCE FOR ALTERNATING HEAD CATALYSIS BY KINESIN DURING MICROTUBULE-STIMULATED ATP HYDROLYSIS [J].
HACKNEY, DD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (15) :6865-6869
[9]   Processivity of the motor protein kinesin requires two heads [J].
Hancock, WO ;
Howard, J .
JOURNAL OF CELL BIOLOGY, 1998, 140 (06) :1395-1405
[10]   Reversal in the direction of movement of a molecular motor [J].
Henningsen, U ;
Schliwa, M .
NATURE, 1997, 389 (6646) :93-96