Pyrosequencling™ based SNP allele frequency estimation in DNA pools

被引:37
作者
Lavebratt, C
Sengul, S
Jansson, M
Schalling, M
机构
[1] Karolinska Inst, Karolinska Hosp, Dept Mol Med, Neurogenet Unit, S-17176 Stockholm, Sweden
[2] Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden
关键词
pyrosequencing; DNA pooling; SNP; genotyping;
D O I
10.1002/humu.10292
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Association screening involving numerous genetic markers is facilitated by the analysis of pooled DNA samples rather than individual samples. Several genotyping methods have shown high accuracy and precision of allele frequency estimation in pools. Here, we expand the validation of SNP allele frequency estimation in DNA pools using Pyrosequencing(TM) by analyzing 186 pools for three SNPs representing complex sequencing cases. The correlation coefficient between estimated and true allele frequencies ranged between 0.979 and 0.996 and tended to increase with pool size, whereas the difference between estimated and true allele frequencies was 2.37 +/- 0.11%, in post-PCR pools. The precision was 1.73%. Pool size had no significant effect on accuracy and precision. A comparison between post-PCR and pre-PCR pools showed that for pre-PCR pooling efforts to accurately quantify the genomic DNA samples to be pooled and subsequently amplified are critical. To conclude, Pyrosequencing(TM) can be used for allele frequency estimation in DNA pools of SNPs with complex sequencing scenarios with accuracy and precision values in ranges comparable with those of other SNP typing techniques. Considering the ease of use, short run and analysis times, and little instrument maintenance requirements, Pyrosequencing(TM) may even be a preferred option. (C) 2003 Wiley-Liss, Inc.
引用
收藏
页码:92 / 97
页数:6
相关论文
共 28 条
[1]   Determination of single-nucleotide polymorphisms by real-time pyrophosphate DNA sequencing [J].
Alderborn, A ;
Kristofferson, A ;
Hammerling, U .
GENOME RESEARCH, 2000, 10 (08) :1249-1258
[2]  
[Anonymous], 1989, Molecular Cloning: A Laboratory Manual
[3]   Association testing by DNA pooling: An effective initial screen [J].
Bansal, A ;
van den Boom, D ;
Kammerer, S ;
Honisch, C ;
Adam, G ;
Cantor, CR ;
Kleyn, P ;
Braun, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (26) :16871-16874
[4]   Determining SNP allele frequencies in DNA pools [J].
Breen, G ;
Harold, D ;
Ralston, S ;
Shaw, D ;
Clair, DS .
BIOTECHNIQUES, 2000, 28 (03) :464-+
[5]   High-throughput development and characterization of a genomewide collection of gene-based single nucleotide polymorphism markers by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry [J].
Buetow, KH ;
Edmonson, M ;
MacDonald, R ;
Clifford, R ;
Yip, P ;
Kelley, J ;
Little, DP ;
Strausberg, R ;
Koester, H ;
Cantor, CR ;
Braun, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (02) :581-584
[6]   Genetic epidemiology of single-nucleotide polymorphisms [J].
Collins, A ;
Lonjou, C ;
Morton, NE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (26) :15173-15177
[7]   Pyrosequencing™:: An accurate detection platform for single nucleotide polymorphisms [J].
Fakhrai-Rad, H ;
Pourmand, N ;
Ronaghi, M .
HUMAN MUTATION, 2002, 19 (05) :479-485
[8]   High-throughput SNP allele-frequency determination in pooled DNA samples by kinetic PCR [J].
Germer, S ;
Holland, MJ ;
Higuchi, R .
GENOME RESEARCH, 2000, 10 (02) :258-266
[9]  
Glantz S., 1997, PRIMER BIOSTATISTICS
[10]   Power and sample size calculations for case-control genetic association tests when errors are present: Application to single nucleotide polymorphisms [J].
Gordon, D ;
Finch, SJ ;
Nothnagel, M ;
Ott, J .
HUMAN HEREDITY, 2002, 54 (01) :22-33