Predicting Clinical Outcomes Across Changing Electronic Health Record Systems

被引:19
作者
Gong, Jen J. [1 ]
Naumann, Tristan [1 ]
Szolovits, Peter [1 ]
Guttag, John V. [1 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
来源
KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING | 2017年
基金
美国国家科学基金会;
关键词
clinical risk models; electronic health records; model portability; machine learning;
D O I
10.1145/3097983.3098064
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing machine learning methods typically assume consistency in how semantically equivalent information is encoded. However, the way information is recorded in databases differs across institutions and over time, often rendering potentially useful data obsolescent. To address this problem, we map database-specific representations of information to a shared set of semantic concepts, thus allowing models to be built from or transition across different databases. We demonstrate our method on machine learning models developed in a healthcare setting. In particular, we evaluate our method using two different intensive care unit (ICU) databases and on two clinically relevant tasks, in-hospital mortality and prolonged length of stay. For both outcomes, a feature representation mapping EHR-specific events to a shared set of clinical concepts yields better results than using EHR-specific events alone.
引用
收藏
页码:1497 / 1505
页数:9
相关论文
共 29 条
  • [1] [Anonymous], 2005, P 43 ANN M ASS COMP
  • [2] Practical experience with the maintenance and auditing of a large medical ontology
    Baorto, David
    Li, Li
    Cimino, James J.
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2009, 42 (03) : 494 - 503
  • [3] The Unified Medical Language System (UMLS): integrating biomedical terminology
    Bodenreider, O
    [J]. NUCLEIC ACIDS RESEARCH, 2004, 32 : D267 - D270
  • [4] Bollacker K., 2008, P 2008 ACM SIGMOD IN, P1247, DOI DOI 10.1145/1376616.1376746
  • [5] Portability of an algorithm to identify rheumatoid arthritis in electronic health records
    Carroll, Robert J.
    Thompson, Will K.
    Eyler, Anne E.
    Mandelin, Arthur M.
    Cai, Tianxi
    Zink, Raquel M.
    Pacheco, Jennifer A.
    Boomershine, Chad S.
    Lasko, Thomas A.
    Xu, Hua
    Karlson, Elizabeth W.
    Perez, Raul G.
    Gainer, Vivian S.
    Murphy, Shawn N.
    Ruderman, Eric M.
    Pope, Richard M.
    Plenge, Robert M.
    Kho, Abel Ngo
    Liao, Katherine P.
    Denny, Joshua C.
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2012, 19 (E1) : E162 - E169
  • [6] Chia C.C., 2011, SDM, P735
  • [7] Divita Guy, 2014, AMIA Annu Symp Proc, V2014, P467
  • [8] Dong XL, 2013, PROC INT CONF DATA, P1245, DOI 10.1109/ICDE.2013.6544914
  • [9] Automated UMLS-Based Comparison of Medical Forms
    Dugas, Martin
    Fritz, Fleur
    Krumm, Rainer
    Breil, Bernhard
    [J]. PLOS ONE, 2013, 8 (07):
  • [10] Fan RE, 2008, J MACH LEARN RES, V9, P1871