The Intestinal Microbiota and Obesity

被引:180
作者
Kallus, Samuel J. [2 ]
Brandt, Lawrence J. [1 ]
机构
[1] Montefiore Med Ctr, AECOM, Div Gastroenterol, Bronx, NY 10467 USA
[2] Georgetown Univ Hosp, Dept Med, Washington, DC 20007 USA
关键词
intestinal microbiota; obesity; microbiome; PROTEIN-COUPLED RECEPTOR; DIET-INDUCED OBESITY; FORMULA-FED INFANTS; CHAIN FATTY-ACIDS; GUT MICROBIOTA; WEIGHT-LOSS; INFLAMMATION; MICROFLORA; MICE; OVERWEIGHT;
D O I
10.1097/MCG.0b013e31823711fd
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Obesity has been and continues to be an epidemic in the United States. Obesity has been addressed in multiple health initiatives, including Healthy People 2010, with no state meeting the proposed goal of a prevalence of obesity < 15% of the adult population. In contrast, obesity rates have continued to increase, with the self-reported prevalence of obesity among adults increasing by 1.1% from 2007 to the present. Indeed, since 2009, 33 states reported obesity prevalences of 25% or more with only 1 state reporting prevalence < 20%. There have been multiple approaches for the treatment of obesity, including fad diets, incentive-based exercise programs, and gastric bypass surgery; none of which have been optimal. In a murine model, it was shown that the majority of the intestinal microbiome consists of two bacterial phyla, the Bacteroidetes and the Firmicutes, and that the relative abundance of these two phyla differs among lean and obese mice; the obese mouse had a higher proportion of Firmicutes to Bacteroidetes (50% greater) than the lean mouse. The same results were appreciated in obese humans compared to lean subjects. The postulated explanation for this finding is that Firmicutes produce more complete metabolism of a given energy source than do Bacteroidetes, thus promoting more efficient absorption of calories and subsequent weight gain. Researchers were able to demonstrate that colonizing germ-free mice with the intestinal microbiome from obese mice led to an increased total body fat in the recipient mice despite a lack of change in diet. The converse, that, colonizing germ-free obese mice with the intestinal microbiome of thin mice causing a decreased total body fat in the recipient mice, has not yet been done. Other possible mechanisms by which the intestinal microbiome affects host obesity include induction of low-grade inflammation with lipopolysaccharide, regulation of host genes responsible for energy expenditure and storage, and hormonal communication between the intestinal microbiome and the host. The following review discusses the microbiome-obesity relationship and proposed mechanisms by which the intestinal microbiota is hypothesized to influence weight gain.
引用
收藏
页码:16 / 24
页数:9
相关论文
共 86 条
[1]   The gut microbiota as an environmental factor that regulates fat storage [J].
Bäckhed, F ;
Ding, H ;
Wang, T ;
Hooper, LV ;
Koh, GY ;
Nagy, A ;
Semenkovich, CF ;
Gordon, JI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (44) :15718-15723
[2]   Mechanisms underlying the resistance to diet-induced obesity in germ-free mice [J].
Backhed, Fredrik ;
Manchester, Jill K. ;
Semenkovich, Clay F. ;
Gordon, Jeffrey I. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (03) :979-984
[3]   Dietary agents in cancer prevention: flavonoids and isoflavonoids [J].
Birt, DF ;
Hendrich, S ;
Wang, WQ .
PHARMACOLOGY & THERAPEUTICS, 2001, 90 (2-3) :157-177
[4]   Metabolic diversity of the intestinal microbiota: Implications for health and disease [J].
Blaut, Michael ;
Clavel, Thomas .
JOURNAL OF NUTRITION, 2007, 137 (03) :751S-755S
[5]   THE RESPONSE TO LONG-TERM OVERFEEDING IN IDENTICAL-TWINS [J].
BOUCHARD, C ;
TREMBLAY, A ;
DESPRES, JP ;
NADEAU, A ;
LUPIEN, PJ ;
THERIAULT, G ;
DUSSAULT, J ;
MOORJANI, S ;
PINAULT, S ;
FOURNIER, G .
NEW ENGLAND JOURNAL OF MEDICINE, 1990, 322 (21) :1477-1482
[6]   A model of host-microbial interactions in an open mammalian ecosystem [J].
Bry, L ;
Falk, PG ;
Midtvedt, T ;
Gordon, JI .
SCIENCE, 1996, 273 (5280) :1380-1383
[7]   Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia [J].
Cani, P. D. ;
Neyrinck, A. M. ;
Fava, F. ;
Knauf, C. ;
Burcelin, R. G. ;
Tuohy, K. M. ;
Gibson, G. R. ;
Delzenne, N. M. .
DIABETOLOGIA, 2007, 50 (11) :2374-2383
[8]   Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability [J].
Cani, P. D. ;
Possemiers, S. ;
Van de Wiele, T. ;
Guiot, Y. ;
Everard, A. ;
Rottier, O. ;
Geurts, L. ;
Naslain, D. ;
Neyrinck, A. ;
Lambert, D. M. ;
Muccioli, G. G. ;
Delzenne, N. M. .
GUT, 2009, 58 (08) :1091-1103
[9]   Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice [J].
Cani, Patrice D. ;
Bibiloni, Rodrigo ;
Knauf, Claude ;
Neyrinck, Audrey M. ;
Neyrinck, Audrey M. ;
Delzenne, Nathalle M. ;
Burcelin, Remy .
DIABETES, 2008, 57 (06) :1470-1481
[10]   Metabolic endotoxemia initiates obesity and insulin resistance [J].
Cani, Patrice D. ;
Amar, Jacques ;
Iglesias, Miguel Angel ;
Poggi, Marjorie ;
Knauf, Claude ;
Bastelica, Delphine ;
Neyrinck, Audrey M. ;
Fava, Francesca ;
Tuohy, Kieran M. ;
Chabo, Chantal ;
Waget, Aurelie ;
Delmee, Evelyne ;
Cousin, Beatrice ;
Sulpice, Thierry ;
Chamontin, Bernard ;
Ferrieres, Jean ;
Tanti, Jean-Francois ;
Gibson, Glenn R. ;
Casteilla, Louis ;
Delzenne, Nathalie M. ;
Alessi, Marie Christine ;
Burcelin, Remy .
DIABETES, 2007, 56 (07) :1761-1772