Origin of Anomalous Activities for Electrocatalysts in Alkaline Electrolytes

被引:77
作者
Subbaraman, Ram [1 ]
Danilovic, N. [1 ]
Lopes, P. P. [1 ,2 ]
Tripkovic, D. [1 ]
Strmcnik, D. [1 ]
Stamenkovic, V. R. [1 ]
Markovic, N. M. [1 ]
机构
[1] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA
[2] Univ Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
OXYGEN REDUCTION; OXIDE FORMATION; OXIDATION; ELECTRODES; ADSORPTION; EVOLUTION; PT(111); IMPACT; MODEL;
D O I
10.1021/jp3075783
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pt extended surfaces and nanoparticle electrodes are used to understand the origin of anomalous activities for electrocatalytic reactions in alkaline electrolytes as a function of cycling/time. Scanning tunneling microscopy (STM) of the surfaces before and after cycling in alkaline electrolytes was used to understand the morphology of the impurities and their impact on the catalytic sites. The nature of the contaminant species is identified as 3d-transition metal cations, and the formation of hydr(oxy)oxides of these elements is established as the main reason for the observed behavior. We find that, while for the oxygen reduction reaction (ORR) and the hydrogen oxidation reaction (HOR) the blocking of the sites by the undesired 3d-transition metal hydr(oxy)oxide species leads to deactivation of the reaction activities, the CO oxidation reaction and the hydrogen evolution reaction (HER) can have beneficial effects from the same impurities, the latter being dependent on the exact nature of the adsorbing species. These results show the significance of impurities present in real electrolytes and their impact on electrocatalysis.
引用
收藏
页码:22231 / 22237
页数:7
相关论文
共 26 条
[1]  
ANGERSTEINKOZLOWSKA H, 1979, J ELECTROANAL CHEM, V100, P417, DOI 10.1016/0368-1874(79)85127-8
[2]   Comparative evaluation of surface structure specificity of kinetics of UPD and OPD of H at single-crystal Pt electrodes [J].
Conway, BE ;
Barber, J ;
Morin, S .
ELECTROCHIMICA ACTA, 1998, 44 (6-7) :1109-1125
[3]   Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H [J].
Conway, BE ;
Tilak, BV .
ELECTROCHIMICA ACTA, 2002, 47 (22-23) :3571-3594
[4]  
Danilovic N., 2012, ELECTROCATALYSIS, P1
[5]  
Lasia A., 2003, Handbook of Fuel Cell Technology, V2, P414, DOI [10.1002/9780470974001.F204033, DOI 10.1002/9780470974001.F204033]
[6]   Effect of temperature on surface processes at the Pt(111)-liquid interface: Hydrogen adsorption, oxide formation, and CO oxidation [J].
Markovic, NM ;
Schmidt, TJ ;
Grgur, BN ;
Gasteiger, HA ;
Behm, RJ ;
Ross, PN .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (40) :8568-8577
[7]  
Markovic NM, 2002, SURF SCI REP, V45, P121, DOI 10.1016/S0167-5729(01)00022-X
[8]   Analysis of the impact of individual glass constituents on electrocatalysis on pt electrodes in alkaline solution [J].
Mayrhofer, K. J. J. ;
Crampton, A. S. ;
Wiberg, G. K. H. ;
Arenz, M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (06) :P78-P81
[9]   Impact of glass corrosion on the electrocatalysis on Pt electrodes in alkaline electrolyte [J].
Mayrhofer, K. J. J. ;
Wiberg, G. K. H. ;
Arenz, M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (01) :P1-P5
[10]   Adsorbate-Induced Surface Segregation for Core-Shell Nanocatalysts [J].
Mayrhofer, Karl J. J. ;
Juhart, Viktorija ;
Hartl, Katrin ;
Hanzlik, Marianne ;
Arenz, Matthias .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (19) :3529-3531