Switching on fast lithium ion conductivity in garnets:: The structure and transport properties of Li3+xNd3Te2-xSbxO12

被引:118
作者
O'Callaghan, Michael P. [1 ]
Powell, Andrew S. [1 ]
Titman, Jeremy J. [1 ]
Chen, George Z. [2 ]
Cussen, Edmund J. [1 ,3 ]
机构
[1] Univ Nottingham, Sch Chem, Nottingham NG7 2RD, England
[2] Univ Nottingham, Sch Chem Environm & Mining Engn, Nottingham NG7 2RD, England
[3] Univ Strathclyde, Dept Pure & Appl Chem, WestCHEM, Glasgow G1 1XL, Lanark, Scotland
关键词
D O I
10.1021/cm703677q
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polycrystalline samples of the garnets Li3+sNd3Te,,_,Sb,012 have been prepared by high temperature solid state synthesis. X-ray and neutron powder diffraction data show that all compounds crystallize in the space group Ia (3) over bard with lattice parameters in the range 12.55576(12) angstrom for x = 0.05 to 12.6253(2) angstrom for x = 1.5. The lithium is distributed over a mixture of oxide tetrahedra and heavily distorted octahedra. Increasing the lithium content in these compounds leads to the introduction of vacancies onto the tetrahedral position and an increasing concentration of lithium found in the octahedra. The latter exhibit considerable positional disorder with two lithium cations positions within each octahedron. Impedance measurements. show fast ion conduction with an activation energy of ca. 0.59(6) eV that is largely invariant with composition. Solid-state Li NMR measurements indicate that there is no exchange of lithium between the different coordination environments. These results indicate that lithium conduction in the garnet structure occurs exclusively via a network of edge-linked distorted oxide octahedra and that the tetrahedrally coordination lithium plays no part in the transport properties.
引用
收藏
页码:2360 / 2369
页数:10
相关论文
共 24 条
[1]   REFINEMENT OF THE STRUCTURE OF A GROSSULARITE GARNET [J].
ABRAHAMS, SC ;
GELLER, S .
ACTA CRYSTALLOGRAPHICA, 1958, 11 (06) :437-441
[2]   Increasing the conductivity of crystalline polymer electrolytes [J].
Christie, AM ;
Lilley, SJ ;
Staunton, E ;
Andreev, YG ;
Bruce, PG .
NATURE, 2005, 433 (7021) :50-53
[3]   A neutron diffraction study of the d0 and d10 lithium garnets Li3Nd3W2O12 and Li5La3Sb2O12 [J].
Cussen, Edmund J. ;
Yip, Thomas W. S. .
JOURNAL OF SOLID STATE CHEMISTRY, 2007, 180 (06) :1832-1839
[4]   The structure of lithium garnets:: cation disorder and clustering in a new family of fast Li+ conductors [J].
Cussen, EJ .
CHEMICAL COMMUNICATIONS, 2006, (04) :412-413
[5]   Grain size-dependent electrical properties of rutile (TiO2) [J].
Demetry, C ;
Shi, XL .
SOLID STATE IONICS, 1999, 118 (3-4) :271-279
[6]   NMR studies of cathode materials for lithium-ion rechargeable batteries [J].
Grey, CP ;
Dupré, N .
CHEMICAL REVIEWS, 2004, 104 (10) :4493-4512
[7]   SYNTHESIS, STRUCTURE DETERMINATION AND MAGNETIC-SUSCEPTIBILITIES OF THE OXIDES LN3LI5SB2O12 (LN = PR, ND, SM) [J].
ISASI, J ;
VEIGA, ML ;
SAEZPUCHE, R ;
JEREZ, A ;
PICO, C .
JOURNAL OF ALLOYS AND COMPOUNDS, 1991, 177 (02) :251-257
[8]  
Larson A. C., 1990, GEN STRUCTURE ANAL S
[9]   Mechanical properties of nanocrystalline materials [J].
Meyers, MA ;
Mishra, A ;
Benson, DJ .
PROGRESS IN MATERIALS SCIENCE, 2006, 51 (04) :427-556
[10]   Lithium dimer formation in the Li-conducting garnets Li5+xBaxLa3-xTa2O12 (0 < x ≤ 1.6) [J].
O'Callaghan, Michael P. ;
Cussen, Edmund J. .
CHEMICAL COMMUNICATIONS, 2007, (20) :2048-2050