Gridding Mars Orbiter Laser Altimeter data with GMT: effects of pixel size and interpolation methods on DEM integrity

被引:12
作者
Okubo, CH [1 ]
Schultz, RA
Stefanelli, GS
机构
[1] Univ Nevada, Mackay Sch Mines, Geomech Rock Fracture Grp, Dept Geol Sci 172, Reno, NV 89557 USA
[2] Univ Nevada, Reno Lib, DataWorks, Reno, NV 89557 USA
关键词
digital elevation model; topography; continuous surface interpolation; irregularly spaced data; gridding algorithms;
D O I
10.1016/j.cageo.2003.10.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
High-resolution digital elevation models (DEMs) based on Mars orbiter laser altimeter (MOLA) data provide geospatial characterizations of Martian topography. MOLA range data are essentially two-dimensional topographic profiles. Transforming these profile data into three-dimensional DEMs requires the interpolation of a continuous surface between MOLA observations. To this end, we outline a method of generating MOLA-based DEMs using the generic mapping tools (GMT) software suite. The percentage of interpolated data within these DEMs is a function of the spatial density of the MOLA observations and is shown to vary inversely with the pixel size of the DEM. We test the relative accuracy of our DEMs by comparing interpolated elevation values against coincident MOLA observations. Tests are conducted on MOLA-based DEMs containing similar to98% interpolated data at a resolution of 200 pixel/degrees. Our results yield average elevation differences and standard deviations for the interpolated surfaces that are comparable to the uncertainty of the original MOLA data. Based on these findings, we conclude that the GMT interpolation routines produce meaningful high-resolution MOLA-based DEMs. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:59 / 72
页数:14
相关论文
共 17 条
[1]   Mars Orbiter Laser Altimeter: receiver model and performance analysis [J].
Abshire, JB ;
Sun, XL ;
Afzal, RS .
APPLIED OPTICS, 2000, 39 (15) :2449-2460
[2]   Mars global surveyor mission: Overview and status [J].
Albee, AL ;
Palluconi, FD ;
Arvidson, RE .
SCIENCE, 1998, 279 (5357) :1671-1672
[3]  
[Anonymous], DATA VISUALIZATION G
[4]  
[Anonymous], 1996, 1 WORKSHOP APPL COMP
[5]   High-resolution digital elevation models derived from Viking Orbiter images: Method and comparison with Mars Orbiter Laser Altimeter Data [J].
Baratoux, D ;
Delacourt, C ;
Allemand, P .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2001, 106 (E12) :32927-32941
[6]   Clues to the lithospheric structure of Mars from wrinkle ridge sets and localization instability -: art. no. 5048 [J].
Montési, LGJ ;
Zuber, MT .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2003, 108 (E6)
[7]   Crossover analysis of Mars Orbiter Laser Altimeter data [J].
Neumann, GA ;
Rowlands, DD ;
Lemoine, FG ;
Smith, DE ;
Zuber, MT .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2001, 106 (E10) :23753-23768
[8]  
OKUBO C, 2003, IN PRESS GEOL SOC AM
[9]   Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements of the planets and satellites: 2000 [J].
Seidelmann P.K. ;
Abalakin V.K. ;
Bursa M. ;
Davies M.E. ;
De Bergh C. ;
Lieske J.H. ;
Oberst J. ;
Simon J.L. ;
Standish E.M. ;
Stooke P. ;
Thomas P.C. .
Celestial Mechanics and Dynamical Astronomy, 2002, 82 (1) :83-110
[10]  
Smith D.E., 2003, MARS GLOBAL SURVEYOR, DOI [10.17189/1519520, DOI 10.17189/1519520]