Polyaniline-Coated Electro-Etched Carbon Fiber Cloth Electrodes for Supercapacitors

被引:236
作者
Cheng, Qian [1 ,2 ]
Tang, Jie [1 ,2 ]
Ma, Jun [1 ]
Zhang, Han [1 ]
Shinya, Norio [1 ]
Qin, Lu-Chang [3 ]
机构
[1] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan
[2] Univ Tsukuba, Doctoral Program Mat Sci & Engn, Tsukuba, Ibaraki 3050047, Japan
[3] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA
关键词
ELECTROCHEMICAL STORAGE; COMPOSITE ELECTRODE; CAPACITANCE; ENERGY; PERFORMANCE; NANOTUBES; BEHAVIOR;
D O I
10.1021/jp203852p
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon fiber clothes are a promising material for electrodes of supercapacitors owing to their unique 3-D structure, high surface area, remarkable chemical stability, and electrical conductivity. In this Article, electro-etched carbon fiber cloth is explored as an electrode for supercapacitors by coating polyaniline nanowires. The as-prepared electro-etched carbon fiber cloth and polyaniline nanowires, which were characterized by scanning electron microscopy and transmission electron microscopy, were assembled into supercapacitors The polyaniline nanowires can reach a mass-normalized specific capacitance of 673 F/g and an area-normalized specific capacitance of 3.5 F/cm(2). We also studied the etching and coating of single carbon fibers using the same processing method. The single fiber shows almost the same specific capacitance as the carbon fiber cloth of the same coating density, indicating good accessibility of etched carbon fiber cloth electrode. This work suggests that our polyaniline-based etched carbon fiber cloth electrodes can be a low-cost and scalable solution for the high-performance energy storage devices.
引用
收藏
页码:23584 / 23590
页数:7
相关论文
共 32 条
[1]   Anodic deposition of manganese oxide electrodes with rod-like structures for application as electrochemical capacitors [J].
Babakhani, Banafsheh ;
Ivey, Douglas G. .
JOURNAL OF POWER SOURCES, 2010, 195 (07) :2110-2117
[2]   Pseudocapacitive Mechanism of Manganese Oxide in 1-Ethyl-3-methytimidazolium Thiocyanate Ionic Liquid Electrolyte Studied Using X-ray Photoelectron Spectroscopy [J].
Chang, Jeng-Kuei ;
Lee, Ming-Tsung ;
Tsai, Wen-Ta ;
Deng, Ming-Jay ;
Cheng, Hui-Fang ;
Sun, I-Wen .
LANGMUIR, 2009, 25 (19) :11955-11960
[3]  
Conway B.E., 1999, ELECTROCHEMICAL SUPE, P698
[4]   TRANSITION FROM SUPERCAPACITOR TO BATTERY BEHAVIOR IN ELECTROCHEMICAL ENERGY-STORAGE [J].
CONWAY, BE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (06) :1539-1548
[5]   Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition:: Implications for electrochemical capacitors [J].
Fischer, Anne E. ;
Pettigrew, Katherine A. ;
Rolison, Debra R. ;
Stroud, Rhonda M. ;
Long, Jeffrey W. .
NANO LETTERS, 2007, 7 (02) :281-286
[6]   Supercapacitors based on conducting polymers/nanotubes composites [J].
Frackowiak, E ;
Khomenko, V ;
Jurewicz, K ;
Lota, K ;
Béguin, F .
JOURNAL OF POWER SOURCES, 2006, 153 (02) :413-418
[7]   Electrochemical storage of energy in carbon nanotubes and nanostructured carbons [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2002, 40 (10) :1775-1787
[8]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950
[9]   Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes [J].
Futaba, Don N. ;
Hata, Kenji ;
Yamada, Takeo ;
Hiraoka, Tatsuki ;
Hayamizu, Yuhei ;
Kakudate, Yozo ;
Tanaike, Osamu ;
Hatori, Hiroaki ;
Yumura, Motoo ;
Iijima, Sumio .
NATURE MATERIALS, 2006, 5 (12) :987-994
[10]   Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites [J].
Gupta, Vinay ;
Miura, Norio .
JOURNAL OF POWER SOURCES, 2006, 157 (01) :616-620