Linear plasmon dispersion in single-wall carbon nanotubes and the collective excitation spectrum of graphene

被引:215
作者
Kramberger, C. [1 ]
Hambach, R. [2 ,3 ]
Giorgetti, C. [2 ]
Ruemmeli, M. H. [1 ]
Knupfer, M. [1 ]
Fink, J. [1 ,4 ]
Buechner, B. [1 ]
Reining, Lucia [2 ]
Einarsson, E. [5 ]
Maruyama, S. [5 ]
Sottile, F. [2 ]
Hannewald, K. [3 ]
Olevano, V. [6 ,7 ]
Marinopoulos, A. G. [2 ,8 ]
Pichler, T. [1 ,9 ]
机构
[1] IFW Dresden, D-01069 Dresden, Germany
[2] CEA DSM, CNRS, Ecole Polytech, Solides Irradies Lab, F-91128 Palaiseau, France
[3] Univ Jena, IFTO, D-07743 Jena, Germany
[4] BESSY, D-12481 Berlin, Germany
[5] Univ Tokyo, Dept Mech Engn, Bunkyo Ku, Tokyo 1138656, Japan
[6] CNRS, Inst Neel, Grenoble, France
[7] UJF, Grenoble, France
[8] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[9] Univ Vienna, Inst Mat Phys, A-1090 Vienna, Austria
关键词
D O I
10.1103/PhysRevLett.100.196803
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have measured a strictly linear pi plasmon dispersion along the axis of individualized single-wall carbon nanotubes, which is completely different from plasmon dispersions of graphite or bundled single-wall carbon nanotubes. Comparative ab initio studies on graphene-based systems allow us to reproduce the different dispersions. This suggests that individualized nanotubes provide viable experimental access to collective electronic excitations of graphene, and it validates the use of graphene to understand electronic excitations of carbon nanotubes. In particular, the calculations reveal that local field effects cause a mixing of electronic transitions, including the "Dirac cone," resulting in the observed linear dispersion.
引用
收藏
页数:4
相关论文
共 25 条
[1]   Nanotube electronics and optoelectronics [J].
Avouris, Phaedon ;
Chen, Jia .
MATERIALS TODAY, 2006, 9 (10) :46-54
[2]   GREEN-FUNCTION APPROACH TO LINEAR RESPONSE IN SOLIDS [J].
BARONI, S ;
GIANNOZZI, P ;
TESTA, A .
PHYSICAL REVIEW LETTERS, 1987, 58 (18) :1861-1864
[3]   Excitons in carbon nanotubes:: An ab initio symmetry-based approach -: art. no. 196401 [J].
Chang, E ;
Bussi, G ;
Ruini, A ;
Molinari, E .
PHYSICAL REVIEW LETTERS, 2004, 92 (19) :196401-1
[4]   Electronic and transport properties of nanotubes [J].
Charlier, Jean-Christophe ;
Blase, Xavier ;
Roche, Stephan .
REVIEWS OF MODERN PHYSICS, 2007, 79 (02) :677-732
[5]   Revealing the small-bundle internal structure of vertically aligned single-walled carbon nanotube films [J].
Einarsson, Erik ;
Shiozawa, Hidetsugu ;
Kramberger, Christian ;
Ruemmeli, Mark H. ;
Grueneis, Alexander ;
Pichler, Thomas ;
Maruyama, Shigeo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (48) :17861-17864
[6]  
FINK J, 1989, ADV ELECTRON EL PHYS, V75, P121
[7]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[8]   First-principles computation of material properties: the ABINIT software project [J].
Gonze, X ;
Beuken, JM ;
Caracas, R ;
Detraux, F ;
Fuchs, M ;
Rignanese, GM ;
Sindic, L ;
Verstraete, M ;
Zerah, G ;
Jollet, F ;
Torrent, M ;
Roy, A ;
Mikami, M ;
Ghosez, P ;
Raty, JY ;
Allan, DC .
COMPUTATIONAL MATERIALS SCIENCE, 2002, 25 (03) :478-492
[9]   Collective excitations in graphite layers [J].
Huang, CS ;
Lin, MF ;
Chuu, DS .
SOLID STATE COMMUNICATIONS, 1997, 103 (11) :603-606
[10]   Optical properties of single-wall carbon nanotubes [J].
Kataura, H ;
Kumazawa, Y ;
Maniwa, Y ;
Umezu, I ;
Suzuki, S ;
Ohtsuka, Y ;
Achiba, Y .
SYNTHETIC METALS, 1999, 103 (1-3) :2555-2558