Off-center yaw rotation: effect of naso-occipital linear acceleration on the nystagmus response of normal human subjects and patients after unilateral vestibular loss

被引:17
作者
Curthoys, IS [1 ]
Haslwanter, T
Black, RA
Burgess, AM
Halmagyi, GM
Topple, AN
Todd, MJ
机构
[1] Univ Sydney, Dept Psychol, Vestibular Res Lab, Sydney, NSW 2006, Australia
[2] Royal Prince Alfred Hosp, Dept Neurol, Eye & Ear Res Unit, Sydney, NSW, Australia
关键词
linear acceleration; otoliths; utricular macula; nystagmus; labyrinth vestibular; vestibulo-ocular; vestibulo-ocular response; vestibular commissures; vestibular compensation; labyrinthectomy;
D O I
10.1007/s002210050587
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Dual search coils were used to record horizontal, vertical and torsional eye movement components of one eye during nystagmus caused by off-center yaw rotation (yaw centrifugation). Both normal healthy human subjects (n=7) and patients with only one functioning labyrinth (n=12) were studied in order to clarify how the concomitant linear acceleration affected the nystagmus response. Each subject was seated with head erect on the arm of a fixed-chair human centrifuge, 1 m away from the center of the rotation, and positioned to be facing along a radius; either towards (facing-in) or away from (facing-out) the center of rotation. Both yaw right and yaw left angular accelerations of 10 degrees s(-2) from 0 to 200 degrees/s were studied. During rotation a centripetal linear acceleration (increasing from 0 to 1.24xg units) was directed along the subject's naso-occipital axis resulting in a shift of the resultant angle of the gravitoinertial acceleration (GIA) of 51 degrees in the subject's pitch plane and an increase in the total GIA magnitude from 1.0 to 1.59xg. In normal subjects during the angular acceleration off-center there were, in addition to the horizontal eye velocity components, torsional and vertical eye velocities present. The magnitude of these additional components, although small, was larger than observed during similar experiments with on-center angular acceleration (Haslwanter et al. 1996), and the change in these components is attributed to the additional effect of the linear acceleration stimulation. In the pitch plane the average size of the shift of the axis of eye velocity (AEV) during the acceleration was about 8 degrees for a 51 degrees shift of the GIA (around 16% of the GIA shift) so that the AEV-GIA alignment was inadequate. There was a very marked difference in the size of the AEV shift depending on whether the person was facing-in [AEV shift forward (i.e. non-compensatory) of about 4 degrees] or facing-out [AEV shift forward (i.e. compensatory) of around 12 degrees]. The linear acceleration decreased the time constant of decay of the horizontal component of the post-rotatory nystagmus: from an average of 24.8 degrees/s facing-in to an average of 11.3 degrees/s facing-out. The linear acceleration dumps torsional eye velocity in an manner analogous to, but independent of, the dumping of horizontal eye velocity. Patients with UVD had dramatically reduced torsional eye velocities for both facing-in and facing-out headings, and there was little if any shift of the AEV in UVD patients. The relatively small effects of linear acceleration on human canal-induced nystagmus found here confirms other recent studies in humans (Fetter et al. 1996) in contrast to evidence from monkeys and emphasizes the large and important differences between humans and monkeys in otolith-canal interaction. Our results confirm the vestibular control of the axis of eye velocity of humans is essentially head-referenced whereas in monkeys that control is essentially space-referenced.
引用
收藏
页码:425 / 438
页数:14
相关论文
共 44 条
[1]   INERTIAL REPRESENTATION OF ANGULAR MOTION IN THE VESTIBULAR SYSTEM RHESUS-MONKEYS .1. VESTIBULOOCULAR REFLEX [J].
ANGELAKI, DE ;
HESS, BJM .
JOURNAL OF NEUROPHYSIOLOGY, 1994, 71 (03) :1222-1249
[2]   Organizational principles of otolith- and semicircular canal-ocular reflexes in rhesus monkeys [J].
Angelaki, DE ;
Hess, BJM .
NEW DIRECTIONS IN VESTIBULAR RESEARCH, 1996, 781 :332-347
[3]  
[Anonymous], 1988, Nonlinear regression analysis and its applications
[4]  
Becker RA, 1998, WADSWORTH BROOKSCOLE
[5]   PLANAR RELATIONSHIPS OF SEMICIRCULAR CANALS IN MAN [J].
BLANKS, RHI ;
CURTHOYS, IS ;
MARKHAM, CH .
ACTA OTO-LARYNGOLOGICA, 1975, 80 (3-4) :185-196
[6]  
BLANKS RHI, 1978, EXP BRAIN RES, V32, P509
[7]   HUMAN OCULAR COUNTERROLL - ASSESSMENT OF STATIC AND DYNAMIC PROPERTIES FROM ELECTROMAGNETIC SCLERAL COIL RECORDINGS [J].
COLLEWIJN, H ;
VANDERSTEEN, J ;
FERMAN, L ;
JANSEN, TC .
EXPERIMENTAL BRAIN RESEARCH, 1985, 59 (01) :185-196
[8]   The human horizontal vestibulo-ocular reflex during combined linear and angular acceleration [J].
Crane, BT ;
Viirre, ES ;
Demer, JL .
EXPERIMENTAL BRAIN RESEARCH, 1997, 114 (02) :304-320
[9]   SEMICIRCULAR CANAL FUNCTIONAL-ANATOMY IN CAT, GUINEA-PIG AND MAN [J].
CURTHOYS, IS ;
BLANKS, RHI ;
MARKHAM, CH .
ACTA OTO-LARYNGOLOGICA, 1977, 83 (3-4) :258-265
[10]   CONVERGENCE OF LABYRINTHINE INFLUENCES ON UNITS IN VESTIBULAR NUCLEI OF CAT .1. NATURAL STIMULATION [J].
CURTHOYS, IS ;
MARKHAM, CH .
BRAIN RESEARCH, 1971, 35 (02) :469-+