Minimum-entropy data partitioning using reversible jump Markov chain Monte Carlo

被引:40
作者
Roberts, SJ
Holmes, C
Denison, D
机构
[1] Univ Oxford, Dept Engn Sci, Robot Res Grp, Oxford OX1 6PJ, England
[2] Univ London Imperial Coll Sci & Technol, Dept Math, London SW7 2BZ, England
基金
英国工程与自然科学研究理事会;
关键词
unsupervised data analysis; mixture models; Bayesian analysis; reversible-jump Markov Chain Monte Carlo; number of clusters;
D O I
10.1109/34.946994
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Problems in data analysis often require the unsupervised partitioning of a data set into classes. Several methods exist for such partitioning but many have the weakness of being formulated via strict parametric models (e.g., each class is modeled by a single Gaussian) or being computationally intensive in high-dimensional data spaces. We reconsider the notion of such cluster analysis in information-theoretic terms and show that an efficient partitioning may be given via a minimization of partition entropy. A reversible-jump sampling is introduced to explore the variable-dimension space of partition models.
引用
收藏
页码:909 / 914
页数:6
相关论文
共 18 条
[1]   COMPARATIVE-ANALYSIS OF STATISTICAL PATTERN-RECOGNITION METHODS IN HIGH-DIMENSIONAL SETTINGS [J].
AEBERHARD, S ;
COOMANS, D ;
DEVEL, O .
PATTERN RECOGNITION, 1994, 27 (08) :1065-1077
[2]  
ANDRIEU C, 1999, P IEEE SIGN PROC WOR
[3]  
Bernardo J.M., 2009, Bayesian Theory, V405
[4]  
Bishop C. M., 1995, NEURAL NETWORKS PATT
[5]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[6]  
Fukunaga K., 1990, INTRO STAT PATTERN R
[7]  
Green PJ, 1995, BIOMETRIKA, V82, P711, DOI 10.2307/2337340
[8]   Bayesian radial basis functions of variable dimension [J].
Holmes, CC ;
Mallick, BK .
NEURAL COMPUTATION, 1998, 10 (05) :1217-1233
[9]  
Jain K, 1988, Algorithms for clustering data
[10]  
Neal R., 1996, LECTURE NOTES IN STATISTICS -NEW YORK- SPRINGER VERLAG-