Simulation of Aqueous Dissolution of Lithium Manganate Spinel from First Principles

被引:60
作者
Benedek, R. [1 ]
Thackeray, M. M. [1 ]
Low, J. [2 ]
Bucko, Tomas [3 ,4 ,5 ,6 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
[3] Comenius Univ, Fac Nat Sci, Dept Phys & Theoret Chem, SK-84215 Bratislava, Slovakia
[4] Slovak Acad Sci, Inst Inorgan Chem, SK-84236 Bratislava, Slovakia
[5] Univ Vienna, Fak Phys, A-1090 Vienna, Austria
[6] Univ Vienna, Ctr Computat Mat Sci, A-1090 Vienna, Austria
关键词
MOLECULAR-DYNAMICS SIMULATIONS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; ION BATTERIES; CRYSTAL; WATER; KINETICS; CATHODES; INSIGHTS; QUARTZ;
D O I
10.1021/jp208793k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Constrained density functional theory at the GGA+U level, within the Blue Moon ensemble, as implemented in the VASP code, is applied to simulate aqueous dissolution of lithium manganate spine!, a candidate cathode material for lithium ion batteries. Ions are dissolved from stoichiometric slabs of composition LiMn2O4, with orientations (001) and (110), embedded in a cell with 20 angstrom water channels between periodically repeated slabs. Analysis of the Blue Moon ensemble forces for dissolution of Li, Mn, and O ions from lithium manganate indicate that bond breaking occurs sequentially, ordered from weak to strong bonds, where bond breaking occurs when a bond length. is stretched about 50% relative to its equilibrium value. Substrate ions are displaced to maintain bond lengths close to equilibrium for bonds other than that the one being broken. The predicted free energies required to break the chemical bonds with the LiMn2O4 substrate are Mn3+, 1.4; O2-, 1.0; Mn2+, 0.8; and Li+, 0.35, in eV; an existing experimental measurement (Lu, C. H.; Lin, S. W. J. Mater. Res. 2002, 17, 1476) had yielded an effective dissolution activation energy of 0.7 eV. A mechanism for the role of acid in promoting lithium manganate dissolution is discussed.
引用
收藏
页码:4050 / 4059
页数:10
相关论文
共 34 条
[1]   Transport processes at α-quartz-water interfaces:: Insights from first-principles molecular dynamics simulations [J].
Adeagbo, Waheed A. ;
Doltsinis, Nikos L. ;
Klevakina, Ksenia ;
Renner, Joerg .
CHEMPHYSCHEM, 2008, 9 (07) :994-1002
[2]  
AKESSON R, 1994, J AM CHEM SOC, V116, P8691
[3]   Design of electrolyte solutions for Li and Li-ion batteries: a review [J].
Aurbach, D ;
Talyosef, Y ;
Markovsky, B ;
Markevich, E ;
Zinigrad, E ;
Asraf, L ;
Gnanaraj, JS ;
Kim, HJ .
ELECTROCHIMICA ACTA, 2004, 50 (2-3) :247-254
[4]   Free energy for protonation reaction in lithium-ion battery cathode materials [J].
Benedek, R. ;
Thackeray, M. M. ;
van de Walle, A. .
CHEMISTRY OF MATERIALS, 2008, 20 (17) :5485-5490
[5]   Simulation of the surface structure of lithium manganese oxide spinel [J].
Benedek, R. ;
Thackeray, M. M. .
PHYSICAL REVIEW B, 2011, 83 (19)
[6]   Pourbaix-like phase diagram for lithium manganese spinels in acid [J].
Benedek, R. ;
Thackeray, M. M. ;
van de Walle, A. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (02) :369-374
[8]   Monomolecular cracking of propane over acidic chabazite: An ab initio molecular dynamics and transition path sampling study [J].
Bucko, Tomas ;
Benco, Lubomir ;
Hafner, Juergen ;
Angyan, Janos G. .
JOURNAL OF CATALYSIS, 2011, 279 (01) :220-228
[9]   Mechanism of alkane dehydrogenation catalyzed by acidic zeolites: Ab initio transition path sampling [J].
Bucko, Tomas ;
Benco, Lubomir ;
Dubay, Orest ;
Dellago, Christoph ;
Hafner, Juergen .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (21)
[10]   Modelling high-pressure aqueous fluids in the system CaO-SiO2-H2O: A comprehensive semi-empirical thermodynamic formalism [J].
Burchard, Michael ;
Maresch, Walter V. ;
Fockenberg, Thomas ;
Doltsinis, Nikos L. ;
Adeagbo, Waheed A. .
EUROPEAN JOURNAL OF MINERALOGY, 2011, 23 (03) :409-424