A numerical method for computing minimal surfaces in arbitrary dimension

被引:13
作者
Cecil, T [1 ]
机构
[1] Univ Texas, ICES, Univ Stn, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.jcp.2004.12.022
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we propose a numerical method for computing minimal surfaces with fixed boundaries, The level set method is used to evolve a codimension-1 surface with fixed codimension-2 boundary ill R-n under mean curvature flow. For n = 3 the problem has been approached in D, L. Chopp, 1993 and L.-T. Cheng [D. L Chopp, Computing minimal surfaces via level set curvature flow, J. Comput. Phys. 106(1) (199.1) 77 91 and L.-T. Cheng, The level set method applied to geometrically based motion, materials science, and image processing, UCLA CAM Report, 00-20] using the level set method, but with a more complicated boundary conditions, The method we present can be generalized straightforward to arbitrary dimension, and the framework in which it is presented is dimension independent, Examples are shown for n = 2, 3, 4. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:650 / 660
页数:11
相关论文
共 30 条
[1]  
ANDERSSON S, 1988, CHEM REV, P88
[2]  
Brakke K., 1992, EXP MATH, V1, P141, DOI DOI 10.1080/10586458.1992.10504253
[3]  
Cecil T, 2004, J COMPUT PHYS, V196, P327, DOI [10.1016/j.jcp.2003.11.010, 10.1016/j.jcp. 2003.11.010]
[4]  
CHEN B, 2001, SCIENCE, P291
[5]  
CHENG LT, 0020 UCLA CAM
[6]   COMPUTING MINIMAL-SURFACES VIA LEVEL SET CURVATURE FLOW [J].
CHOPP, DL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 106 (01) :77-91
[7]   A CONTRIBUTION TO THE PARTICLE MODELING OF SOAP FILMS [J].
COPPIN, C ;
GREENSPAN, D .
APPLIED MATHEMATICS AND COMPUTATION, 1988, 26 (04) :315-331
[8]  
Dierkes U., 1992, GRUNDLEHREN MATH WIS, V295
[9]  
DOUGLAS J, 1927, ANN MATH, V29, P180
[10]  
DZIUK G, 1991, NUMER MATH, V58, P603