Invariant measures of differential inclusions applied to singular perturbations

被引:38
作者
Artstein, Z [1 ]
机构
[1] Weizmann Inst Sci, Dept Theoret Math, IL-76100 Rehovot, Israel
关键词
D O I
10.1006/jdeq.1998.3536
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:289 / 307
页数:19
相关论文
共 22 条
[1]  
[Anonymous], 1993, J DYN DIFF EQU
[2]   Singularly perturbed ordinary differential equations with dynamic limits [J].
Artstein, Z ;
Vigodner, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :541-569
[3]   APPROXIMATING THE INTEGRAL OF A MULTIFUNCTION [J].
ARTSTEIN, Z ;
WETS, RJB .
JOURNAL OF MULTIVARIATE ANALYSIS, 1988, 24 (02) :285-308
[4]  
ARTSTEIN Z, IN PRESS J DYNAM DIF
[5]  
Aubin J.-P., 1984, DIFFERENTIAL INCLUSI
[6]  
BILINGSLEY P, 1968, CONVERGENCE PROBABIL
[7]  
COLONIUS F, 1996, 6 LECT DYNAMICAL SYS, P121
[8]  
Deimling K., 1992, MULTIVALUED DIFFEREN, DOI DOI 10.1515/9783110874228
[9]   A Tikhonov-type theorem for singularly perturbed differential inclusions [J].
Dontchev, A ;
Donchev, TZ ;
Slavov, I .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (09) :1547-1554
[10]   Averaging of singularly perturbed systems [J].
Grammel, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (11) :1851-1865