Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions

被引:3129
作者
Lee, Youngmin [1 ,3 ]
Suntivich, Jin [2 ,3 ]
May, Kevin J. [1 ,3 ]
Perry, Erin E. [2 ,3 ]
Shao-Horn, Yang [1 ,2 ,3 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[3] MIT, Electrochem Energy Lab, Cambridge, MA 02139 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2012年 / 3卷 / 03期
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
WATER OXIDATION; OXIDE CATALYSTS; SULFURIC-ACID; FUEL-CELLS; ELECTROCATALYSIS; REDUCTION; RUTHENIUM; ELECTRODE; SURFACES; FILM;
D O I
10.1021/jz2016507
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The activities of the oxygen evolution reaction (OER) on iridium-oxide- and ruthenium-oxide-based catalysts are among the highest known to date. However, the OER activities of thermodynamically stable rutile iridium oxide (r-IrO2) and rutile iridium oxide (r-RuO2), normalized to catalyst mass or true surface area are not well-defined. Here we report a synthesis of r-IrO2 and r-RuO2 nanoparticles (NPs) of similar to 6 nm, and examine their OER activities in acid and alkaline solutions. Both r-IrO2 and r-RuO2 NPs were highly active for OER, with r-RuO2 exhibiting up to 10 A/g(oxide) at 1.48 V versus reversible hydrogen electrode. When comparing the two, r-RuO2 NPs were found to have slightly higher intrinsic and mass OER activities than r-IrO2 in both acid and basic solutions. Interestingly, these oxide NPs showed higher stability under OER conditions than commercial Ru/C and Ir/C catalysts. Our study shows that these r-RuO2 and r-IrO2 NPs can serve as a benchmark in the development of active OER catalysts for electrolyzers, metal-air batteries, and photoelectrochemical water splitting applications.
引用
收藏
页码:399 / 404
页数:6
相关论文
共 39 条
[1]  
[Anonymous], ATLAS ELECTROCHEMICA
[2]   Highly Dispersed RuO2 Nanoparticles on Carbon Nanotubes: Facile Synthesis and Enhanced Supercapacitance Performance [J].
Bi, Rong-Rong ;
Wu, Xing-Long ;
Cao, Fei-Fei ;
Jiang, Ling-Yan ;
Guo, Yu-Guo ;
Wan, Li-Jun .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (06) :2448-2451
[3]   Synthesis and characterization of nanocrystals of the oxide metals, RuO2, IrO2, and ReO3 [J].
Biswas, Kanishka ;
Rao, C. N. R. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (06) :1969-1974
[4]   OXYGEN ELECTRODE-REACTION .2. BEHAVIOR AT RUTHENIUM BLACK ELECTRODES [J].
BURKE, LD ;
OMEARA, TO .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1972, 68 :839-&
[5]   OXYGEN-ELECTRODE .8. OXYGEN EVOLUTION AT RUTHENIUM DIOXIDE ANODES [J].
BURKE, LD ;
MURPHY, OJ ;
ONEILL, JF ;
VENKATESAN, S .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1977, 73 :1659-1671
[6]   Solar Energy Supply and Storage for the Legacy and Non legacy Worlds [J].
Cook, Timothy R. ;
Dogutan, Dilek K. ;
Reece, Steven Y. ;
Surendranath, Yogesh ;
Teets, Thomas S. ;
Nocera, Daniel G. .
CHEMICAL REVIEWS, 2010, 110 (11) :6474-6502
[7]   Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger [J].
Dotan, Hen ;
Sivula, Kevin ;
Graetzel, Michael ;
Rothschild, Avner ;
Warren, Scott C. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :958-964
[8]   Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters [J].
Esswein, Arthur J. ;
Surendranath, Yogesh ;
Reece, Steven Y. ;
Nocera, Daniel G. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (02) :499-504
[9]   Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells - A mechanistic investigation [J].
Ferreira, PJ ;
la O', GJ ;
Shao-Horn, Y ;
Morgan, D ;
Makharia, R ;
Kocha, S ;
Gasteiger, HA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (11) :A2256-A2271
[10]   Bimetallic Ru Electrocatalysts for the OER and Electrolytic Water Splitting in Acidic Media [J].
Forgie, Rhys ;
Bugosh, Greg ;
Neyerlin, K. C. ;
Liu, Zengcai ;
Strasser, Peter .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2010, 13 (04) :D36-D39