Metal current collector-free freestanding silicon-carbon 1D nanocomposites for ultralight anodes in lithium ion batteries

被引:59
作者
Choi, Jang Wook [1 ]
Hu, Liangbing [1 ]
Cui, Lifeng [1 ]
McDonough, James R. [1 ]
Cui, Yi [1 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Current collector; Li-ion battery; Nanowire; Nanofiber; NEGATIVE-ELECTRODE; STORAGE; TIN;
D O I
10.1016/j.jpowsour.2010.06.108
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although current collectors take up more weight than active materials in most lithium ion battery cells, so far research has been focused mainly on improving gravimetric capacities of active materials. To address this issue of improving gravimetric capacities based on overall cell components, we develop freestanding nanocomposites made of carbon nanofibers (CNFs) and silicon nanowires (SiNWs) as metal current collector-free anode platforms. Intrinsically large capacities of SiNWs as active materials in conjunction with the light nature of freestanding CNF films allow the nanocomposites to achieve 3-5 times improved gravimetric capacities compared to what have been reported in the literature. Moreover, three-dimensional porous structures in the CNF films facilitate increased mass loadings of SiNWs when compared to flat substrates and result in good cycle lives over 40 cycles. This type of nanocomposite cell suggests that 3D porous platforms consisting of light nanomaterials can provide for higher gravimetric and areal capacities when compared to conventional battery cells based on flat, heavy metal substrates. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:8311 / 8316
页数:6
相关论文
共 19 条
[1]   Amorphous silicon as a possible anode material for Li-ion batteries [J].
Bourderau, S ;
Brousse, T ;
Schleich, DM .
JOURNAL OF POWER SOURCES, 1999, 81 :233-236
[2]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[3]   Effect of substrate pre-coating on adhesion of sintered nickel plaques for electrode application in rechargeable batteries [J].
Chani, VI ;
Yang, Q ;
Wilkinson, DS ;
Weatherly, GC .
JOURNAL OF POWER SOURCES, 2005, 142 (1-2) :370-381
[4]   Stepwise Nanopore Evolution in One-Dimensional Nanostructures [J].
Choi, Jang Wook ;
McDonough, James ;
Jeong, Sangmoo ;
Yoo, Jee Soo ;
Chan, Candace K. ;
Cui, Yi .
NANO LETTERS, 2010, 10 (04) :1409-1413
[5]   Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries [J].
Cui, Li-Feng ;
Yang, Yuan ;
Hsu, Ching-Mei ;
Cui, Yi .
NANO LETTERS, 2009, 9 (09) :3370-3374
[6]   Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition:: Implications for electrochemical capacitors [J].
Fischer, Anne E. ;
Pettigrew, Katherine A. ;
Rolison, Debra R. ;
Stroud, Rhonda M. ;
Long, Jeffrey W. .
NANO LETTERS, 2007, 7 (02) :281-286
[7]   Highly reversible lithium storage in nanostructured silicon [J].
Graetz, J ;
Ahn, CC ;
Yazami, R ;
Fultz, B .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (09) :A194-A197
[8]   Comparative studies of MCMB and C-C composite as anodes for lithium-ion battery systems [J].
Hossain, S ;
Kim, YK ;
Saleh, Y ;
Loutfy, R .
JOURNAL OF POWER SOURCES, 2003, 114 (02) :264-276
[9]   Highly conductive paper for energy-storage devices [J].
Hu, Liangbing ;
Choi, Jang Wook ;
Yang, Yuan ;
Jeong, Sangmoo ;
La Mantia, Fabio ;
Cui, Li-Feng ;
Cui, Yi .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (51) :21490-21494
[10]   Characterization of commercially available lithium-ion batteries [J].
Johnson, BA ;
White, RE .
JOURNAL OF POWER SOURCES, 1998, 70 (01) :48-54