Neuroprotective effects of alpha-lipoic acid and its enantiomers demonstrated in rodent models of focal cerebral ischemia

被引:76
作者
Wolz, P
Krieglstein, J
机构
[1] Inst. fur Pharmakol. und Toxikol., Fb. Pharmazie und Lebensmittelchemie, Philipps-Universität, Marburg
[2] Inst. fur Pharmakol. und Toxikol., Fb. Pharmazie und Lebensmittelchemie, Philipps-Universität, D-35032 Marburg
关键词
lipoic acid; lipoic acid enantiomers; dihydrolipoic acid; focal cerebral ischemia; neuroprotection;
D O I
10.1016/0028-3908(95)00172-7
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The purpose of this study was to investigate whether alpha-lipoic acid (LA), the oxidized form of the radical scavenger dihydrolipoic acid (DLA), protected brain tissue against ischemic damage and whether there were differences in the neuroprotective potencies between its enantiomers. We used the models of focal cerebral ischemia in mice and rats. The infarct area on the mouse brain surface and the infarct volume of the rat brain were determined by means of an image analyzing system. The LA was capable of reducing the infarct area only when it was administered subcutaneously, but not when it was administered intraperitoneally or into the cisterna magna. Both the R- and the S-enantiomer of LA protected brain tissue against ischemic damage, but their protective activities seemed to be related to the time period of pretreatment. In mice, both enantiomers revealed a similar neuroprotective potency when they were administered subcutaneously 1 or 2 hr before occlusion of the middle cerebral artery (MCA), whereas a longer time period of pretreatment (4 or 6 hr) failed to exert neuroprotection. In rats, subcutaneous pretreatment with R- or S-LA for 2 hr before ischemia significantly diminished the infarct volume. We assume that LA has to be reduced to DLA which finally causes neuroprotection. Copyright (C) 1996 Elsevier Science Ltd.
引用
收藏
页码:369 / 375
页数:7
相关论文
共 38 条
[1]   THRESHOLDS IN CEREBRAL-ISCHEMIA - THE ISCHEMIC PENUMBRA [J].
ASTRUP, J ;
SIESJO, BK ;
SYMON, L .
STROKE, 1981, 12 (06) :723-725
[2]   ARACHIDONIC-ACID AS A MESSENGER IN THE CENTRAL-NERVOUS-SYSTEM [J].
ATTWELL, D ;
MILLER, B ;
SARANTIS, M .
SEMINARS IN THE NEUROSCIENCES, 1993, 5 (03) :159-169
[3]  
AUST S D, 1985, Journal of Free Radicals in Biology and Medicine, V1, P3, DOI 10.1016/0748-5514(85)90025-X
[4]   A MOUSE MODEL OF FOCAL CEREBRAL-ISCHEMIA FOR SCREENING NEUROPROTECTIVE DRUG EFFECTS [J].
BACKHAUSS, C ;
KARKOUTLY, C ;
WELSCH, M ;
KRIEGLSTEIN, J .
JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 1992, 27 (01) :27-32
[5]   INTERPLAY BETWEEN LIPOIC ACID AND GLUTATHIONE IN THE PROTECTION AGAINST MICROSOMAL LIPID-PEROXIDATION [J].
BAST, A ;
HAENEN, GRMM .
BIOCHIMICA ET BIOPHYSICA ACTA, 1988, 963 (03) :558-561
[6]   THE EFFECTS OF 2 21-AMINOSTEROIDS ON OVERT INFARCT SIZE 48 HOURS AFTER MIDDLE CEREBRAL-ARTERY OCCLUSION IN THE RAT [J].
BECK, T ;
BIELENBERG, GW .
BRAIN RESEARCH, 1991, 560 (1-2) :159-162
[7]   ELEVATION OF THE EXTRACELLULAR CONCENTRATIONS OF GLUTAMATE AND ASPARTATE IN RAT HIPPOCAMPUS DURING TRANSIENT CEREBRAL-ISCHEMIA MONITORED BY INTRACEREBRAL MICRODIALYSIS [J].
BENVENISTE, H ;
DREJER, J ;
SCHOUSBOE, A ;
DIEMER, NH .
JOURNAL OF NEUROCHEMISTRY, 1984, 43 (05) :1369-1374
[8]   INCREASED LIPID-PEROXIDATION IN VULNERABLE BRAIN-REGIONS AFTER TRANSIENT FOREBRAIN ISCHEMIA IN RATS [J].
BROMONT, C ;
MARIE, C ;
BRALET, J .
STROKE, 1989, 20 (07) :918-924
[9]  
CHAN PH, 1994, BRAIN PATHOL, V4, P59
[10]   GLUTAMATE NEUROTOXICITY AND DISEASES OF THE NERVOUS-SYSTEM [J].
CHOI, DW .
NEURON, 1988, 1 (08) :623-634