An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase

被引:776
作者
Schuler, LD [1 ]
Daura, X [1 ]
Van Gunsteren, WF [1 ]
机构
[1] ETH Zentrum, Swiss Fed Inst Technol, Chem Phys Lab, CH-8092 Zurich, Switzerland
关键词
GROMOS96 force field 45A3; aliphatic hydrocarbons; condensed phase properties; molecular dynamics simulation;
D O I
10.1002/jcc.1078
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Over the past 4 years the GROMOS96 force field has been successfully used in biomolecular simulations, for example in peptide folding studies and detailed protein investigations, but no applications to lipid systems have been published yet. Here we provide a detailed investigation of aliphatic liquid systems. For liquids of larger aliphatic chains, n-heptane and longer, the standard GROMOS96 parameter sets 43A1 and 43A2 yield a too low pressure at the experimental density. Therefore, a reparametrization of the GROMOS96 force field regarding aliphatic carbons was initiated. The new force field parameter set 45A3 shows considerable improvements for n-alkanes, cyclo-, iso-, and neoalkanes and other branched aliphatics. Liquid densities and heat of vaporization are reproduced for almost all of these molecules. Excellent agreement is found with experiment for the free energy of hydration for alkanes. The GROMOS96 45A3 parameter set should, therefore, be suitable for application to lipid aggregates such as membranes and micelles, for mixed systems of aliphatics with or without water, for polymers, and other apolar systems that may interact with different biomolecules. (C) 2001 John Wiley & Sons, Inc.
引用
收藏
页码:1205 / 1218
页数:14
相关论文
共 65 条
[1]   SOLVATION THERMODYNAMICS OF NONIONIC SOLUTES [J].
BENNAIM, A ;
MARCUS, Y .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (04) :2016-2027
[2]  
Berendsen H., 1981, INTERMOLECULAR FORCE, V331, P331, DOI [DOI 10.1007/978-94-015-7658-1_21, 10.1007/978-94-015-7658, DOI 10.1007/978-94-015-7658]
[3]  
Berendsen H J, 1986, Ann N Y Acad Sci, V482, P269, DOI 10.1111/j.1749-6632.1986.tb20961.x
[4]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[5]   AVOIDING SINGULARITIES AND NUMERICAL INSTABILITIES IN FREE-ENERGY CALCULATIONS BASED ON MOLECULAR SIMULATIONS [J].
BEUTLER, TC ;
MARK, AE ;
VANSCHAIK, RC ;
GERBER, PR ;
VANGUNSTEREN, WF .
CHEMICAL PHYSICS LETTERS, 1994, 222 (06) :529-539
[6]   β-Hairpin stability and folding:: Molecular dynamics studies of the first β-hairpin of tendamistat [J].
Bonvin, AMJJ ;
van Gunsteren, WF .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 296 (01) :255-268
[7]   Water molecules in DNA recognition II:: A molecular dynamics view of the structure and hydration of the trp operator [J].
Bonvin, AMJJ ;
Sunnerhagen, M ;
Otting, G ;
van Gunsteren, WF .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 282 (04) :859-873
[8]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[9]   STRUCTURE AND INTERNAL DYNAMICS OF THE BOVINE PANCREATIC TRYPSIN-INHIBITOR IN AQUEOUS-SOLUTION FROM LONG-TIME MOLECULAR-DYNAMICS SIMULATIONS [J].
BRUNNE, RM ;
BERNDT, KD ;
GUNTERT, P ;
WUTHRICH, K ;
VANGUNSTEREN, WF .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1995, 23 (01) :49-62
[10]   GROUP CONTRIBUTIONS TO THE THERMODYNAMIC PROPERTIES OF NON-IONIC ORGANIC SOLUTES IN DILUTE AQUEOUS-SOLUTION [J].
CABANI, S ;
GIANNI, P ;
MOLLICA, V ;
LEPORI, L .
JOURNAL OF SOLUTION CHEMISTRY, 1981, 10 (08) :563-595