Fully exploratory network ICA (FENICA) on resting-state fMRI data

被引:59
作者
Schoepf, V. [1 ,2 ]
Kasess, C. H. [1 ,3 ]
Lanzenberger, R. [3 ]
Fischmeister, F. [1 ,4 ]
Windischberger, C. [1 ,2 ]
Moser, E. [1 ,2 ]
机构
[1] Med Univ Vienna, MR Ctr Excellence, A-1090 Vienna, Austria
[2] Med Univ Vienna, Ctr Med Phys & Biomed Engn, A-1090 Vienna, Austria
[3] Med Univ Vienna, Dept Psychiat & Psychotherapy, Div Biol Psychiat, A-1090 Vienna, Austria
[4] Univ Vienna, Fac Psychol, Vienna, Austria
基金
奥地利科学基金会;
关键词
fMRI; ICA; Resting-state; RSN; Default mode; Group analysis; INDEPENDENT COMPONENT ANALYSIS; FUNCTIONAL CONNECTIVITY; DEFAULT-MODE; HUMAN BRAIN; MOTOR CORTEX; SIGNAL; MODULATION; MRI;
D O I
10.1016/j.jneumeth.2010.07.028
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Independent component analysis (ICA) is one of the most valuable explorative methods for analyzing resting-state networks (RSNs) in fMRI, representing a data-driven approach that enables decomposition of high-dimensional data into discrete components. Extensions to a group-level suffer from the drawback of evaluating single-subject resting-state components of interest either using a predefined spatial template or via visual inspection. FENICA introduced in the context of group ICA methods is based solely on spatially consistency across subjects directly reflecting similar networks. Therefore, group data can be processed without further visual inspection of the single-subject components or the definition of a template (Schopf et al., 2009). In this study FENICA was applied to fMRI resting-state data from 28 healthy subjects resulting in eight group RSNs. These RSNs resemble the spatial patterns of the following previously described networks: (1) visual network, (2) default mode network, (3) sensorimotor network, (4) dorsolateral prefrontal network, (5) temporal prefrontal network, (6) basal ganglia network, (7) auditory processing network, and (8) working memory network. This novel analysis approach for identifying spatially consistent networks across a group of subjects does not require manual or template-based selection of single-subject components and, therefore, offers a truly explorative procedure of assessing RSNs. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:207 / 213
页数:7
相关论文
共 44 条
[1]  
ANDERSON JS, 2010, HUM BRAIN MAPP
[2]   Spontaneous low-frequency blood oxygenation level-dependent fluctuations and functional connectivity analysis of the 'resting' brain [J].
Auer, Dorothee P. .
MAGNETIC RESONANCE IMAGING, 2008, 26 (07) :1055-1064
[3]   Probabilistic independent component analysis for functional magnetic resonance imaging [J].
Beckmann, CF ;
Smith, SA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (02) :137-152
[4]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[5]  
Biswal BB, 1997, NMR BIOMED, V10, P165, DOI 10.1002/(SICI)1099-1492(199706/08)10:4/5<165::AID-NBM454>3.0.CO
[6]  
2-7
[7]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739
[8]   Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks [J].
Calhoun, Vince D. ;
Kiehl, Kent A. ;
Pearlson, Godfrey D. .
HUMAN BRAIN MAPPING, 2008, 29 (07) :828-838
[9]   Advances and pitfalls in the analysis and interpretation of resting-state FMRI data [J].
Cole, David M. ;
Smith, Stephen M. ;
Beckmann, Christian F. .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2010, 4
[10]   Hierarchical clustering to measure connectivity in fMRI resting-state data [J].
Cordes, D ;
Haughton, V ;
Carew, JD ;
Arfanakis, K ;
Maravilla, K .
MAGNETIC RESONANCE IMAGING, 2002, 20 (04) :305-317