Unbiased estimation of ellipses by bootstrapping

被引:42
作者
Cabrera, J [1 ]
Meer, P [1 ]
机构
[1] RUTGERS STATE UNIV,DEPT ELECT & COMP ENGN,PISCATAWAY,NJ 08855
基金
美国国家科学基金会;
关键词
implicit models; curve fitting; bootstrap; low-level processing;
D O I
10.1109/34.506797
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A general method for eliminating the bias of nonlinear estimators using bootstrap is presented. Instead of the traditional mean bias we consider the definition of bias based on the median. The method is applied to the problem of fitting ellipse segments to noisy data. No assumption beyond being independent identically distributed (i.i.d.) is made about the error distribution and experiments with both synthetic and real data prove the effectiveness of the technique.
引用
收藏
页码:752 / 756
页数:5
相关论文
共 24 条
[1]   FITTING CONIC SECTIONS TO SCATTERED DATA [J].
BOOKSTEIN, FL .
COMPUTER GRAPHICS AND IMAGE PROCESSING, 1979, 9 (01) :56-71
[2]  
CABRERA J, 1996, IN PRESS STAT PLANNI
[3]  
CABRERA J, 1995, P 1995 C ISA BEIJ CH, P134
[4]  
Chambers J.M., 1991, Statistical Models in S
[5]  
CHO K, 1995, IEEE INT S COMP VIS, P491
[6]  
Efron B, 1994, INTRO BOOTSTRAP, DOI DOI 10.1201/9780429246593
[7]   ELLIPSE DETECTION AND MATCHING WITH UNCERTAINTY [J].
ELLIS, T ;
ABBOOD, A ;
BRILLAULT, B .
IMAGE AND VISION COMPUTING, 1992, 10 (05) :271-276
[8]   MULTIVARIATE ADAPTIVE REGRESSION SPLINES [J].
FRIEDMAN, JH .
ANNALS OF STATISTICS, 1991, 19 (01) :1-67
[9]  
Fuller W. A., 2009, Measurement error models
[10]  
Haralick R. M., 1992, COMPUTER ROBOT VISIO