Spatial pattern formation in a model of vegetation-climate feedback

被引:15
作者
Adams, B [1 ]
Carr, J [1 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
D O I
10.1088/0951-7715/16/4/309
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a spatial version of Watson and Lovelock's tutorial model of vegetation-climate feedbacks (Watson A J and Lovelock J E 1983 Biological homeostasis of the global environment: the parable of daisyworld Tellus B 35 284-9). Two simple plant types compete on a hypothetical planet, stabilizing the global temperature via an albedo feedback. Numerical solutions show an alternating pattern of the two plant types. A stability analysis shows that there are two mechanisms involved in the pattern formation. A Turing-like process causes the uniform equilibrium state to be unstable to non-constant perturbations and the solution tends towards a striped pattern. This solution is then modified by a mechanism which restricts stripe length and results in subdivision. By calculating the associated temperature function we show how the maximum stripe length can be determined and the stability of different patterns assessed.
引用
收藏
页码:1339 / 1357
页数:19
相关论文
共 19 条
[1]  
ADAMS B, 2003, IN PRESS J THEOR BIO
[2]   On the stability of the atmosphere-vegetation system in the Sahara/Sahel region [J].
Brovkin, V ;
Claussen, M ;
Petoukhov, V ;
Ganopolski, A .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D24) :31613-31624
[3]   VODE - A VARIABLE-COEFFICIENT ODE SOLVER [J].
BROWN, PN ;
BYRNE, GD ;
HINDMARSH, AC .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (05) :1038-1051
[4]  
Carr J., 1981, APPL CTR MANIFOLD TH, DOI [10.1007/978-1-4612-5929-9, DOI 10.1007/978-1-4612-5929-9]
[5]   EPIDEMIC MODELS USED TO EXPLAIN BIOGEOGRAPHICAL DISTRIBUTION-LIMITS [J].
CARTER, RN ;
PRINCE, SD .
NATURE, 1981, 293 (5834) :644-645
[6]   FEEDBACK BETWEEN A SIMPLE BIOSYSTEM AND THE TEMPERATURE OF THE EARTH [J].
DEGREGORIO, S ;
PIELKE, RA ;
DALU, GA .
JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (03) :263-292
[7]   Exploiter-mediated coexistence and frequency-dependent selection in a numerical model of biodiversity [J].
Harding, SP ;
Lovelock, JE .
JOURNAL OF THEORETICAL BIOLOGY, 1996, 182 (02) :109-116
[8]  
Henry D., 1981, Lecture Notes in Mathematics, V840, DOI [10.1007/BFb0089647, DOI 10.1007/BFB0089647]
[9]   Glucose homeostasis with infinite gain: further lessons from the Daisyworld parable? [J].
Koeslag, JH ;
Saunders, PT ;
Wessels, JA .
JOURNAL OF ENDOCRINOLOGY, 1997, 154 (02) :187-192
[10]   Daisyworld is Darwinian: Constraints on adaptation are important for planetary self-regulation [J].
Lenton, TM ;
Lovelock, JE .
JOURNAL OF THEORETICAL BIOLOGY, 2000, 206 (01) :109-114