Transport of Axl2p depends on Erv14p, an ER-vesicle protein related to the Drosophila cornichon gene product

被引:116
作者
Powers, J [1 ]
Barlowe, C [1 ]
机构
[1] Dartmouth Med Sch, Dept Biochem, Hanover, NH 03755 USA
关键词
ER; Golgi; vesicles; coat proteins; cell polarity;
D O I
10.1083/jcb.142.5.1209
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
COPII-coated ER-derived transport vesicles from Saccharomyces cerevisiae contain a distinct set of membrane-bound polypeptides. One of these polypeptides, termed Erv14p (ER-vesicle protein of 14 kD), corresponds to an open reading frame on yeast chromosome VII that is predicted to encode an integral membrane protein and shares sequence identity with the Drosophila cornichon gene product. Experiments with an epitope-tagged version of Erv14p indicate that this protein localizes to the ER and is selectively packaged into COPII-coated vesicles. Haploid cells that lack Erv14p are viable but display a modest defect in bud site selection because a transmembrane secretory protein, Ax12p, is not efficiently delivered to the cell surface. Ax12p is required for selection of axial growth sites and normally localizes to nascent bud tips or the mother bud neck. In erv14 Delta strains, Ax12p accumulates in the ER while other secretory proteins are transported at wild-type rates. We propose that Erv14p is required for the export of specific secretory cargo from the ER, The polarity defect of erv14 Delta yeast cells is reminiscent of cornichon mutants, in which egg chambers fail to establish proper asymmetry during early stages of oogenesis. These results suggest an unforeseen conservation in mechanisms producing cell polarity shared between yeast and Drosophila.
引用
收藏
页码:1209 / 1222
页数:14
相关论文
共 76 条
[1]  
[Anonymous], METHOD ENZYMOL
[2]   THE YEAST CA-2+-ATPASE HOMOLOG, PMR1, IS REQUIRED FOR NORMAL GOLGI FUNCTION AND LOCALIZES IN A NOVEL GOLGI-LIKE DISTRIBUTION [J].
ANTEBI, A ;
FINK, GR .
MOLECULAR BIOLOGY OF THE CELL, 1992, 3 (06) :633-654
[3]  
ASHBURNER M, 1990, GENETICS, V126, P679
[4]  
AUSUBEL RM, 1987, CURRENT PROTOCOLS MO
[5]   RECONSTITUTION OF SEC GENE PRODUCT-DEPENDENT INTERCOMPARTMENTAL PROTEIN-TRANSPORT [J].
BAKER, D ;
HICKE, L ;
REXACH, M ;
SCHLEYER, M ;
SCHEKMAN, R .
CELL, 1988, 54 (03) :335-344
[6]   VESICULAR STOMATITIS-VIRUS GLYCOPROTEIN IS SORTED AND CONCENTRATED DURING EXPORT FROM THE ENDOPLASMIC-RETICULUM [J].
BALCH, WE ;
MCCAFFERY, JM ;
PLUTNER, H ;
FARQUHAR, MG .
CELL, 1994, 76 (05) :841-852
[7]   COPII - A MEMBRANE COAT FORMED BY SEC PROTEINS THAT DRIVE VESICLE BUDDING FROM THE ENDOPLASMIC-RETICULUM [J].
BARLOWE, C ;
ORCI, L ;
YEUNG, T ;
HOSOBUCHI, M ;
HAMAMOTO, S ;
SALAMA, N ;
REXACH, MF ;
RAVAZZOLA, M ;
AMHERDT, M ;
SCHEKMAN, R .
CELL, 1994, 77 (06) :895-907
[8]   A SIMPLE AND EFFICIENT METHOD FOR DIRECT GENE DELETION IN SACCHAROMYCES-CEREVISIAE [J].
BAUDIN, A ;
OZIERKALOGEROPOULOS, O ;
DENOUEL, A ;
LACROUTE, F ;
CULLIN, C .
NUCLEIC ACIDS RESEARCH, 1993, 21 (14) :3329-3330
[9]   COPI- and COPII-coated vesicles bud directly from the endoplasmic reticulum in yeast [J].
Bednarek, SY ;
Ravazzola, M ;
Hosobuchi, M ;
Amherdt, M ;
Perrelet, A ;
Schekman, R ;
Orci, L .
CELL, 1995, 83 (07) :1183-1196
[10]   Erv25p, a component of COPII-coated vesicles, forms a complex with Emp24p that is required for efficient endoplasmic reticulum to Golgi transport [J].
Belden, WJ ;
Barlowe, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (43) :26939-26946