Transient kinetic studies on the interaction of ras and the Ras-binding domain of c-Raf-1 reveal rapid equilibration of the complex

被引:111
作者
Sydor, JR
Engelhard, M
Wittinghofer, A
Goody, RS
Herrmann, C
机构
[1] Max Planck Inst Mol Physiol, Abt Strukturelle Biol, D-44026 Dortmund, Germany
[2] Max Planck Inst Mol Physiol, Phys Biochem Abt, D-44026 Dortmund, Germany
关键词
D O I
10.1021/bi980764f
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transient kinetic methods have been used to analyze the interaction between the Ras-binding domain (RBD) of c-Raf-1 and a complex of H-Ras and a GTP analogue. The results obtained show that the binding is a two-step process, with an initial rapid equilibrium step being followed by an isomerization reaction occurring at several hundred per second. The reversal of this step determines the rate constant for dissociation, which is on the order of 10 s(-1). The lifetime of the complex is therefore on the order of 50-100 ms, which is much shorter than the lifetime of GTP at the active site of H-Ras as determined by the intrinsic GTPase reaction. This suggests that multiple interactions of a single activated Ras molecule and Raf can occur, the number being limited by the competing interaction with GAP. The GDP complex of H-Ras binds more than 2 orders of magnitude more weakly than the GTP-analogue complex, mainly due to a significant weakening of the initial binding equilibrium reaction in the GDP state, thereby avoiding even short-lived recruitment of Raf to the plasma membrane by the inactive Ras form.
引用
收藏
页码:14292 / 14299
页数:8
相关论文
共 32 条
[1]   Individual rate constants for the interaction of Ras proteins with GTPase-activating proteins determined by fluorescence spectroscopy [J].
Ahmadian, MR ;
Hoffmann, U ;
Goody, RS ;
Wittinghofer, A .
BIOCHEMISTRY, 1997, 36 (15) :4535-4541
[2]   MAGNESIUM ION-DEPENDENT ADENOSINE-TRIPHOSPHATASE OF MYOSIN - 2-STEP PROCESSES OF ADENOSINE-TRIPHOSPHATE ASSOCIATION AND ADENOSINE-DIPHOSPHATE DISSOCIATION [J].
BAGSHAW, CR ;
ECCLESTON, JF ;
ECKSTEIN, F ;
GOODY, RS ;
GUTFREUND, H ;
TRENTHAM, DR .
BIOCHEMICAL JOURNAL, 1974, 141 (02) :351-364
[3]   Quantitative structure-activity analysis correlating Ras/Raf interaction in vitro to Raf activation in vivo [J].
Block, C ;
Janknecht, R ;
Herrmann, C ;
Nassar, N ;
Wittinghofer, A .
NATURE STRUCTURAL BIOLOGY, 1996, 3 (03) :244-251
[4]   PROTEINS REGULATING RAS AND ITS RELATIVES [J].
BOGUSKI, MS ;
MCCORMICK, F .
NATURE, 1993, 366 (6456) :643-654
[5]   2 DISTINCT RAF DOMAINS MEDIATE INTERACTION WITH RAS [J].
BRTVA, TR ;
DRUGAN, JK ;
GHOSH, S ;
TERRELL, RS ;
CAMPBELLBURK, S ;
BELL, RM ;
DER, CJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (17) :9809-9812
[6]   Ras interaction with two distinct binding domains in Raf-1 may be required for Ras transformation [J].
Drugan, JK ;
KhosraviFar, R ;
White, MA ;
Der, CJ ;
Sung, YJ ;
Hwang, YW ;
Campbell, SL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (01) :233-237
[7]   CRITICAL TYROSINE RESIDUES REGULATE THE ENZYMATIC AND BIOLOGICAL-ACTIVITY OF RAF-1 KINASE [J].
FABIAN, JR ;
DAAR, IO ;
MORRISON, DK .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (11) :7170-7179
[8]   Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization [J].
Farrar, MA ;
AlberolaIla, J ;
Perlmutter, RM .
NATURE, 1996, 383 (6596) :178-181
[9]   Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid - Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated Madin-Darby canine kidney cells [J].
Ghosh, S ;
Strum, JC ;
Sciorra, VA ;
Daniel, L ;
Bell, RM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (14) :8472-8480
[10]   Equilibrium and kinetic measurements reveal rapidly reversible binding of ras to raf [J].
Gorman, C ;
Skinner, RH ;
Skelly, JV ;
Neidle, S ;
Lowe, PN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (12) :6713-6719