System performance of a prototype flat-panel imager operated under marnmographic conditions

被引:39
作者
Jee, KW [1 ]
Antonuk, LE [1 ]
El-Mohri, Y [1 ]
Zhao, QH [1 ]
机构
[1] Univ Michigan, Med Ctr, Dept Radiat Oncol, Ann Arbor, MI 48109 USA
关键词
digital mammography; active matrix flat-panel imager; detective quantum efficiency; cascaded systems model;
D O I
10.1118/1.1585051
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The results of an empirical and theoretical investigation of the performance of a high-resolution, active matrix flat-panel imager performed under mammographic conditions are reported. The imager is based upon a prototype, indirect detection active matrix array incorporating a discrete photodiode in each pixel and a pixel-to-pixel pitch of 97 mum. The investigation involved three imager configurations corresponding to the use of three different x-ray converters with the array. The converters were a conventional Gd2O2S-based mammographic phosphor screen (Min-R) and two structured CsI:T1 scintillators: one optimized for high spatial resolution (FOS-HR) and the other for high light output (FOS-HL). Detective quantum efficiency for mammographic exposures ranging from similar to2 to similar to40 mR at 26 kVp were determined for each imager configuration through measurements of x-ray sensitivity, modulation transfer function (MTF), and noise power spectrum (NPS). All configurations were found to provide significant presampling MTF at frequencies beyond the Nyquist frequency of the array, similar to5.2 mm(-1), consistent with the high spatial resolution of the converters. In addition, the effect of additive electronic noise on the NPS was found to be significantly larger for the configuration with lower system gain (FOS-HR) than for the configurations with higher gain (Min-R, FOS-HL). The maximum DQE values obtained with the CsI:T1 scintillators were considerably greater than those obtained with the Min-R screen due to the significantly lower Swank noise of the scintillators. Moreover, DQE performance was found to degrade with decreasing exposure, although this exposure-dependence was considerably reduced for the higher gain configurations. Theoretical calculations based on the cascaded systems model were found to be in generally good agreement with these empirically determined NPS and DQE values. In this study, we provide an example of how cascaded systems modeling can be used to identify factors limiting system performance and to examine trade-offs between factors toward the goal of maximizing performance. (C) 2003 American Association of Physicists in Medicine.
引用
收藏
页码:1874 / 1890
页数:17
相关论文
共 53 条
[1]  
*AM COLL RAD, 1999, ACR MAMM QUAL CONTR
[2]   Strategies to improve the signal and noise performance of active matrix, flat-panel imagers for diagnostic x-ray applications [J].
Antonuk, LE ;
Jee, KW ;
El-Mohri, Y ;
Maolinbay, M ;
Nassif, S ;
Rong, X ;
Zhao, Q ;
Siewerdsen, JH ;
Street, RA ;
Shah, KS .
MEDICAL PHYSICS, 2000, 27 (02) :289-306
[3]   Empirical investigation of the signal performance of a high-resolution, indirect detection, active matrix flat-panel imager (AMFPI) for fluoroscopic and radiographic operation [J].
Antonuk, LE ;
ElMohri, Y ;
Siewerdsen, JH ;
Yorkston, J ;
Huang, W ;
Scarpine, VE ;
Street, RA .
MEDICAL PHYSICS, 1997, 24 (01) :51-70
[4]   Initial performance evaluation of an indirect-detection, active matrix flat-panel imager (AMFPI) prototype for megavoltage imaging [J].
Antonuk, LE ;
El-Mohri, Y ;
Huang, WD ;
Jee, KW ;
Siewerdsen, JH ;
Maolinbay, M ;
Scarpine, VE ;
Sandler, H ;
Yorkston, J .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1998, 42 (02) :437-454
[5]   A large-area, 97 μm pitch, indirect-detection, active matrix, flat-panel imager (AMFPI) [J].
Antonuk, LE ;
El-Mohri, Y ;
Hall, A ;
Jee, KW ;
Maolinbay, M ;
Nassif, SC ;
Rong, XJ ;
Siewerdsen, JH ;
Zhao, QH ;
Weisfield, RL .
PHYSICS OF MEDICAL IMAGING, 1998, 3336 :2-13
[6]   DEMONSTRATION OF MEGAVOLTAGE AND DIAGNOSTIC-X-RAY IMAGING WITH HYDROGENATED AMORPHOUS-SILICON ARRAYS [J].
ANTONUK, LE ;
BOUDRY, J ;
HUANG, WD ;
MCSHAN, DL ;
MORTON, EJ ;
YORKSTON, J ;
LONGO, MJ ;
STREET, RA .
MEDICAL PHYSICS, 1992, 19 (06) :1455-1466
[7]  
ANTONUK LE, 1992, MATER RES SOC S P, V258, P1069
[8]   Molybdenum, rhodium, and tungsten anode spectral models using interpolating polynomials with application to mammography [J].
Boone, JM ;
Fewell, TR ;
Jennings, RJ .
MEDICAL PHYSICS, 1997, 24 (12) :1863-1874
[9]   Spectral modeling and compilation of quantum fluence in radiography and mammography [J].
Boone, JM .
PHYSICS OF MEDICAL IMAGING, 1998, 3336 :592-601
[10]   ANALYSIS OF THE DETECTIVE QUANTUM EFFICIENCY OF A RADIOGRAPHIC SCREEN FILM COMBINATION [J].
BUNCH, PC ;
HUFF, KE ;
VANMETTER, R .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1987, 4 (05) :902-909