Optimal design of three-dimensional axisymmetric elastic structures

被引:7
作者
Cherkaev, A
Palais, R
机构
[1] Department of Mathematics, University of Utah, Salt Lake City
来源
STRUCTURAL OPTIMIZATION | 1996年 / 12卷 / 01期
关键词
D O I
10.1007/BF01270442
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The problem of maximizing the overall stiffness of an elastic body comprised of given materials will be treated. Particular examples include the optimal shape and structure of shells, plates, domes, cantilevers, etc. The axisymmetry allows us to compute mathematically optimal out-of-plane examples. We will use recently developed variational methods of optimizing local composite structures in conjunction with a computational global minimization strategy. The optimal designs could be simplified into suboptimal projects subject to other practical considerations.
引用
收藏
页码:35 / 45
页数:11
相关论文
共 46 条
[1]  
ALLAIRE G, 1993, Q APPL MATH
[2]  
ALLAIRE G, 1996, UNPUB EXPLICIT LAMIN
[3]  
ALLAIRE G, 1992, TOPOLOGY DESIGN STRU, P239
[4]   OPTIMAL DESIGN OF BENDING ELEMENTS [J].
ARMAND, JL ;
LODIER, B .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 13 (02) :373-384
[5]   OPTIMAL BOUNDS AND MICROGEOMETRIES FOR ELASTIC 2-PHASE COMPOSITES [J].
AVELLANEDA, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1987, 47 (06) :1216-1228
[6]  
BENDSOE M, 1994, METHODS OPTIMIZATION
[7]   GENERATING OPTIMAL TOPOLOGIES IN STRUCTURAL DESIGN USING A HOMOGENIZATION METHOD [J].
BENDSOE, MP ;
KIKUCHI, N .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 71 (02) :197-224
[8]   AN INVESTIGATION CONCERNING OPTIMAL-DESIGN OF SOLID ELASTIC PLATES [J].
CHENG, KT ;
OLHOFF, N .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1981, 17 (03) :305-323
[9]  
CHERKAEV A, 1992, TOPOLOGY DESIGN STRU, P547
[10]  
CHERKAEV A, J MECH PHYS SOLIDS, V41, P937