Pyramidal cell communication within local networks in layer 2/3 of rat neocortex

被引:427
作者
Holmgren, C
Harkany, T
Svennenfors, B
Zilberter, Y
机构
[1] Karolinska Inst, Dept Neurosci, S-17177 Stockholm, Sweden
[2] Karolinska Inst, Dept Med Biochem & Biophys, Mol Neurobiol Lab, S-17177 Stockholm, Sweden
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2003年 / 551卷 / 01期
关键词
D O I
10.1113/jphysiol.2003.044784
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The extent to which neocortical pyramidal cells function as a local network is determined by the strength and probability of their connections. By mapping connections between pyramidal cells we show here that in a local network of about 600 pyramidal cells located within a cylindrical volume of 200 mum x 200 mum of neocortical layer 2/3, an individual pyramidal cell receives synaptic inputs from about 30 other pyramidal neurons, with the majority of EPSP amplitudes in the 0.2-1.0 mV range. The probability of connection decreased from 0.09 to 0.01 with intercell distance (over the range 25-200 mum). Within the same volume, local interneuron (fast-spikingnon-accomodating interneuron, FS)-pyramidal cell connections were about 10 times more numerous, with the majority of connections being reciprocal. The probability of excitatory and inhibitory connections between pyramidal cells and FS interneurons decreased only slightly with distance, being in the range 0.5-0.75. Pyramidal cells in the local network received strong synaptic input during stimulation of afferent fibres in layers 1 and 6. Minimal-like stimulation of layer 1 or layer 6 inputs simultaneously induced postsynaptic potentials in connected pyramidal cells as well as in pyramidal-FS cell pairs. These inputs readily induced firing of pyramidal cells, although synaptically connected cells displayed different firing patterns. Unitary EPSPs in pyramidal-pyramidal cell pairs did not detectably alter cell firing. FS interneurons fire simultaneously with pyramidal cells. In pyramidal-FS cell pairs, both unitary EPSPs and IPSPs efficiently modulated cell firing patterns. We suggest that computation in the local network may proceed not only by direct pyramidal-pyramidal cell communication but also via local interneurons. With such a high degree of connectivity with surrounding pyramidal cells, local interneurons are ideally poised to both coordinate and expand the local pyramidal cell network via pyramidal-interneuron-pyramidal communication.
引用
收藏
页码:139 / 153
页数:15
相关论文
共 49 条
[1]  
Azouz R, 1999, J NEUROSCI, V19, P2209
[2]   SYNAPTIC BACKGROUND ACTIVITY INFLUENCES SPATIOTEMPORAL INTEGRATION IN SINGLE PYRAMIDAL CELLS [J].
BERNANDER, O ;
DOUGLAS, RJ ;
MARTIN, KAC ;
KOCH, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (24) :11569-11573
[3]   Visual input evokes transient and strong shunting inhibition in visual cortical neurons [J].
Borg-Graham, LJ ;
Monier, C ;
Frégnac, Y .
NATURE, 1998, 393 (6683) :369-373
[4]   Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurones of cat visual cortex [J].
Buhl, EH ;
Tamas, G ;
Szilagyi, T ;
Stricker, C ;
Paulsen, O ;
Somogyi, P .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 500 (03) :689-713
[5]  
Cauli B, 1997, J NEUROSCI, V17, P3894
[6]  
CAULLER LJ, 1994, J NEUROSCI, V14, P751
[7]   INTRINSIC FIRING PATTERNS OF DIVERSE NEOCORTICAL NEURONS [J].
CONNORS, BW ;
GUTNICK, MJ .
TRENDS IN NEUROSCIENCES, 1990, 13 (03) :99-104
[8]   Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus:: an ensemble approach in the behaving rat [J].
Csicsvari, J ;
Hirase, H ;
Czurko, A ;
Buzsáki, G .
NEURON, 1998, 21 (01) :179-189
[9]   Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo [J].
Destexhe, A ;
Paré, D .
JOURNAL OF NEUROPHYSIOLOGY, 1999, 81 (04) :1531-1547
[10]   Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons [J].
Destexhe, A ;
Rudolph, M ;
Fellous, JM ;
Sejnowski, TJ .
NEUROSCIENCE, 2001, 107 (01) :13-24