Catalase-deficient tobacco plants:: tools for in planta studies on the role of hydrogen peroxide

被引:55
作者
Dat, JF
Inzé, D
Van Breusegem, F
机构
[1] Univ Ghent, Vakgrp Mol Genet, B-9000 Ghent, Belgium
[2] State Univ Ghent VIB, Dept Plantengenet, B-9000 Ghent, Belgium
关键词
D O I
10.1179/135100001101536012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Adequate responses to environmental changes are crucial for plant growth and survival. However, the molecular and biochemical mechanisms involved are poorly understood and the signaling networks remain elusive. The accumulation of active oxygen species (AOS) is a central theme during plant responses to both biotic and abiotic stresses. In both situations, AOS can play two divergent roles: either exacerbating damage or activating multiple defense responses, thereby acting as signal molecules. Such a dual function was first described in pathogenesis, but also recently has been demonstrated during several abiotic stress responses. To allow for these different roles, cellular levels of AOS must be tightly controlled. This control can be attained through a diverse battery of oxidant scavengers. Perturbation of this scavenging capacity can lead to dramatic imbalances of AOS concentrations, leading to a modified redox status. Here, we summarize mainly the work done on plants that are deficient in catalase activity. These plants not only revealed the importance of catalase in coping with environmental stress but also provided us with a powerful tool to investigate the (multiple) roles of H2O2 in an intact plant system.
引用
收藏
页码:37 / 42
页数:6
相关论文
共 53 条
[1]   Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity [J].
Alvarez, ME ;
Pennell, RI ;
Meijer, PJ ;
Ishikawa, A ;
Dixon, RA ;
Lamb, C .
CELL, 1998, 92 (06) :773-784
[2]   The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons [J].
Asada, K .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :601-639
[3]   Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells [J].
Banzet, N ;
Richaud, C ;
Deveaux, Y ;
Kazmaier, M ;
Gagnon, J ;
Triantaphylidès, C .
PLANT JOURNAL, 1998, 13 (04) :519-527
[4]   DIFFERENTIAL INDUCTION OF ACQUIRED-RESISTANCE AND PR GENE-EXPRESSION IN TOBACCO BY VIRUS-INFECTION, ETHEPHON TREATMENT, UV-LIGHT AND WOUNDING [J].
BREDERODE, FT ;
LINTHORST, HJM ;
BOL, JF .
PLANT MOLECULAR BIOLOGY, 1991, 17 (06) :1117-1125
[5]   Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis-related expression under high light [J].
Chamnongpol, S ;
Willekens, H ;
Langebartels, C ;
VanMontagu, M ;
Inze, D ;
VanCamp, W .
PLANT JOURNAL, 1996, 10 (03) :491-503
[6]   Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco [J].
Chamnongpol, S ;
Willekens, H ;
Moeder, W ;
Langebartels, C ;
Sandermann, H ;
Van Montagu, A ;
Inzé, D ;
Van Camp, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (10) :5818-5823
[7]   Dual action of the active oxygen species during plant stress responses [J].
Dat, J ;
Vandenabeele, S ;
Vranová, E ;
Van Montagu, M ;
Inzé, D ;
Van Breusegem, F .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2000, 57 (05) :779-795
[8]   Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings [J].
Dat, JF ;
Lopez-Delgado, H ;
Foyer, CH ;
Scott, IM .
PLANT PHYSIOLOGY, 1998, 116 (04) :1351-1357
[9]   Nitric oxide functions as a signal in plant disease resistance [J].
Delledonne, M ;
Xia, YJ ;
Dixon, RA ;
Lamb, C .
NATURE, 1998, 394 (6693) :585-588
[10]   Responses of antioxidants to paraquat in pea leaves [J].
Donahue, JL ;
Okpodu, CM ;
Cramer, CL ;
Grabau, EA ;
Alscher, RG .
PLANT PHYSIOLOGY, 1997, 113 (01) :249-257